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AHHOTALMUA

BBenenue: AnHamuTHuecKue peIICHUS 3a7ad CTPOMUTEIBHONM MEXaHUKH HE
TOJIBKO ~ aJbTEPHATUBHBIN MOAXOJ, K PEIICHUI0 MPOOJEeM MPOYHOCTH,
HAJ©KHOCTH WM JWHAMUKUA COOPY)XEHUH, HO W BO3MOXXHOCTH JUIS MPOCTHIX
OIICHOK PabOTOCIIOCOOHOCTH M ONTHMHU3AINN KOHCTPYKIMHA. YacTOTHBIN aHATN3
IUIOCKUX (epM, Hauboliee YACTO MNPHUMEHSIOMUXCS B CTPOHMTENBCTBE U
MAaITUHOCTPOCHHUH, SBIISIETCS BaXXHOM COCTABHOM YaCThIO HCCIIEIOBAHUS
COOpY>KEHUH.

[enu — pa3paboTka alropuTMa TpexmnapaMmeTpUIeCcKol HHIYKIIMU [Tl BBIBOAA
AQHAJTUTHYECKON 3aBUCUMOCTH COOCTBEHHBIX YAaCTOT KojeOaHWi (epMbl OT
YHUCJIa TTaHeTei.

Marepuanasl U MeToabl: PaccMoTpeHa TUTOCKasi CTAaTHYECKH OIpenennmMast
(dhepma ¢ OHOM AOTOTHUTETFHON BHEUTHEH CBSI3bI0 M CIIBOCHHBIMH PAaCKOCAMH.
WNnepunonnpie cBoiicTBa (epMbl MOJETHPYIOTCS TOYEYHBIMH MAaCCaMH,
PACIIONIOKEHHBIME B y3J71aX HIDKHETO TIPSMOJIMHEHHOTrO mosica ¢epMbl. Y
KaXJI0M MacChl TMpeAnojaraeTcs HaJWYue TOJBKO OJHOW BEPTHUKAIBHOMN
creneHn cBOOOAbI. JKecTKocTh BcexX CTepKHEH ¢epMbl TNPUHUMAETCS
oanHakoBoil. CraBHUTCA 3a7ada TONYYEHHUS aHATUTHYECKUX 3aBUCUMOCTEH
4acTOT KoJiebaHuil mpeaioskeHHOW MoJenu (epmbl oT ymcna nanesneil. Beison
HUCKOMBIX (OPMYJ TPOU3BOJUTCS METOJOM HMHIYKIMK B TpH 3Tama - Mo
HOMEpaM CTPOK M CTOJOLIOB MAaTpHIlbl IOJATIIMBOCTH, BBIYMCICHHON IO
¢dbopmyne Makcpemia-Mopa u mo uuciy naHeneil. Jns HaxoxaeHHs: oOUMX
YJICHOB TMOJIYYCHHBIX TOCJIEOBATEIBHOCTEH KOA((UIMEHTOB TPUMEHSIICS
anmapar COCTaBJICHHUS U PEHICHUS PEKypPPEHTHBIX YPAaBHEHUU CHCTEMBI
KOMIIBIOTEpHOH MaTeMaTuku Maple. 3ajgaua omnpeneneHns 4acTOT CBelach K
3aJaue Ha COOCTBEHHBIC 3HAYCHHUS OMCHMMETPUYHON MaTpPHUIIbI.

PesyabTraTpi: [[is1 37eMEHTOB MaTpuIlbl TOJATIMBOCTA HAWAEHBI oOIIHe
(opMyIBI, TIO KOTOPOM COCTAaBJICHBI W PEIICHBl YacCTOTHBIE YpaBHEHHS.
[TokazaHo, YTO B CIIEKTpax 4acTOT ()epM C Pa3IuIHBIM YUCIIOM MTaHENIeH BCeria
MIPUCYTCTBYET OAHA 00Ias 4actora (CpedHsisi 4acToTa), Paclioyiararomascs B
cepenune crekTtpa. HailneHo BwIpakeHHE IS MaKCHUMAlIbHOTO 3HAYCHHS
CpeZiHer J4acTOThl KoyieOaHuit Kak QYHKIIMU BBICOTHI (PepPMBI.

BeiBogbl: [lpennoxeHnas cxema (QepMbl HECMOTPS HA CBOK BHEIIHIOKO
CTaTHYECKYIO HEONPEEIIMMOCTh U PEIIETKY, HE TIO3BOJISIONLYI0 TPUMEHSTh IS
pacuera yCWJIMiA TaKhe METOABI KaK METO/I BBIPE3aHUsl Y3JIOB U METOJ CEUEHH,
JIOTYCKaeT aHaJUTUYECKHE PEIICHUs] IJIsi 4acTOT COOCTBEHHBIX KoJjeOaHUi
Ipy30B B y3nax. [lonydeHHble (HOPMYJIBI UMEIOT JOCTATOYHO MPOCTOM BHI, a



HEKOTOpBIE O0IIMe CBOMCTBA, TAKHE KaK COBIIAJCHUS YaCTOT AJISl PA3HBIX YHCEN
naHelned M Halu4yhe aHAIUTHYECKH DPAaCCUUTHIBAEMOIO0 MaKcUMyMa (DyHKLUHU
CpeAHeH YacTOThI OT BBICOTHI (PEPMBI, AETAIOT ITO pPEHICHHE YAOOHBIM IS
MIPAKTHYECKUX OLICHOK KOHCTPYKLIHH.

KiroueBble cjioBa: yactora kosnebanui, pepma, nHAyKuusA, Maple, ananurudyeckoe
peleHue
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ABSTRACT

Introduction. Analytical solutions for problems of structural mechanics are not only
an alternative approach to solving problems of strength, reliability and dynamics of
structures, but also the possibility for simple performance evaluations and
optimization of structures. Frequency analysis of planar trusses, most often used in
construction and engineering, is an important part of the study of structures.
Objectives — development of a three-parameter induction algorithm for deriving the
analytical dependence of the natural oscillation frequencies of the truss on the
number of panels.

Materials and methods. A flat, statically definable truss with one additional external
link and double braces has been considered. The inertia properties of the truss are
modeled by point masses located in the nodes of the lower straight truss belt. Each
mass is assumed to have only one vertical degree of freedom. The stiffness of all
truss rods is assumed to be the same. The task is to obtain analytical dependences
of the oscillation frequencies of the proposed truss model on the number of panels.
The derivation of the desired formulas is performed by the method of induction in
three stages - according to the numbers of rows and columns of the compliance
matrix, calculated using the Maxwell-Mohr formula and the number of panels. To
find common members of the obtained sequences of coefficients, an apparatus was
used to compile and solve the recurrent equations of the Maple computer
mathematics system. The task of determining frequencies has been reduced to the
eigenvalue problem of a bisymmetric matrix.

Results. For the elements of the compliance matrix, general formulas have been
found, according to which the frequency equations are compiled and solved. It is
shown that in the frequency spectra of trusses with different numbers of panels there
is always one common frequency (middle frequency) located in the middle of the
spectrum. An expression is found for the maximum value of the average oscillation
frequency as a function of the height of the truss.

Conclusions. The proposed truss scheme, despite its external static indeterminacy
and the lattice, which does not allow for the calculation of forces by such methods as
the method of cutting nodes and the cross section method, allows analytical
solutions for the natural frequencies of loads in the nodes. The obtained formulas
have a rather simple form, and some general properties, such as frequency
coincidences for different numbers of panels and the presence of an analytically
calculated maximum of the average frequency function of the truss height, make this
solution convenient for practical structural evaluations.
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INTRODUCTION

Modern computer systems of symbolic mathematics make it possible to find
analytical solutions to problems of structural mechanics as an alternative approach to
solving the problems of strength, reliability, and dynamics of structures [1-7]. In [8—
13], the induction method involving the operators of the Maple system obtained
formulas for the dependence of the deflection of planar trusses on the number of
panels. Analytical solutions of problems on the oscillation of a load with one degree
on a truss with an arbitrary number of panels were obtained in [14—17]. A more
accurate picture of the dynamics of trusses can be given by analyzing a truss model
with a distributed mass, or at least with a mass distributed over the nodes of the
lower belt. The main difficulty in obtaining such solutions is to determine the
rigidity of the structure. In the elastic stage of the truss rods with small oscillations
to find the compliance matrix inverse to the stiffness matrix, a very convenient
method is to use the Maxwell — Mohr formula. The forces in the truss rods included
in this formula in solving the problems of the stiffness of the arches [18-23], lattice
[24-30] and spatial trusses [31-33] were determined on the basis of the program [8-
11] written in Maple language on basis of the cutting knots method. The main
limitation for the analytical method, designed for the analysis of systems with an
arbitrary number of panels, is the regularity of the truss schemes [34,35]. If there are
periodically repeating structures in the structure, for example, panels, then the
induction method is applicable to such trusses. Hutchinson R. G. and Fleck N.A.
[36,37] dealt with the problems of the existence of regular statically definable
schemes, and methods of their calculation. Some particular problems of periodic
trusses are considered in [38].

MATERIALS AND METHODS
Consider a truss with double braces and an additional horizontal external

link on the left support (Fig. 1). The truss has 2n panels and n, =16n+4 rods,

including four rods, modeling the supports. It is assumed that all rods have the same

stiffness EF. An analytical solution of the problem of the deflection of this truss for

an arbitrary number of panels is given in [39]. Solutions for the case of uniform load

over the nodes of the upper and lower belts are obtained by generalizing a number of

solutions for trusses with the number # of panels in half span from 1 to 10:
A=PC,(a’+2bk* +c" )/ (WEF),

where ¢=+/a’ +h”> is the length of the brace, C, is a coefficient depending on the

type of load. The Maxwell — Mohr formula was used to calculate the deflection.
n -4
A PZ S5,
‘< EF
where /; and S is the length and force in the j th rod from the action of the load,
s, is the force from a single vertical force applied to the central node in the lower

J
belt. The forces in the rods were determined by cutting the nodes from the system of



linear equilibrium equations compiled for all the nodes of the structure as a whole,
which made it possible to overcome the external static indeterminacy of the truss.
The solution of the system of linear equations was in symbolic form according to a
program written in the language of computer mathematics Maple.

Fig. 1. The truss scheme, n =3

To derive a formula for the dependence of the frequency of oscillations of
loads located in the nodes of the lower belt on the number of panels and the
geometry of the structure, we will use the same method. The equations of vertical
oscillations of cargo we write in the form

[M 1Y +[D,]¥ =0, (1)

where [M,] is the matrix of inertia, ¥ is the vector of vertical displacements of

n

masses, [D, ] is the stiffness matrix, Y is the vector of accelerations. If the masses of

n

the loads are the same, then the inertia matrix is diagonal:

m 0 .. O

0 m .. 0
M, =

0 0 ... m

The compliance matrix [B,], the inverse stiffness matrix [D,], has the
following elements:
n,—4
b, =2 S8l I (EF), 2
k=1
where S\” is the force in the rod & from the action of a single vertical force at node i,
I, is the length of the rod. Multiplying (1) from the left by the matrix [B,], we get

the equation m[Bn]); +Y=0. The vector of vertical displacements will be

represented as a periodic function Y = Asin(wr +¢@,) . From here, taking into account

the relation ¥ = -’ , we obtain an eigenvalue problem [B,]Y = 1Y , where
A=1/(maw?). (3)

Thus, to solve the problem, it is necessary to obtain analytical expressions
for the matrix members [B,]. This matrix is symmetric not only with respect to the

main diagonal (due to symmetry (2) with respect to i and j), but also with respect to
the secondary diagonal. The last property is related to the symmetry of the structure.
The vertical displacement of the node k from the action of a unit load at the node 2n
— ks equal to the displacement of the node 2n — k from the unit force at the node .



Bisymmetric matrices were studied in [40]. When » = 3 we have the
following form of the matrix

205 308 315 250 137
* 520 558 452

[B;]=2| = * 657 * x|
n * * * * *

* * * * *

where denoted n:(a3+2bh2+c3)/ (3h2EF), and the * symbol denotes elements

whose values follow from the properties of the matrix symmetry. This kind of result
allows, in the decision process, to calculate by the formula not for all values of i,j =
1,2,..,.2n — 1, but only for j = 1, ..., n, i =j ... 2n — j, which significantly reduces
conversion time. To obtain the common members of the sequences in the rows of
the matrix [B,], we use the rff_findrecur operator of the Maple system's genfunc

package, which returns a recurrent equation that is satisfied by the sequence
members. Then the rsolve operator gives a solution to the equation defining the
common term of the sequence. The result can be obtained if the sequence under
investigation has a sufficient length. This task requires a sequence of at least eight.
Therefore, all calculations must be started from the trusses, the number of panels is
more than four. For the first row (j = 1) of the matrix with n = 5, consisting of
elements 657, 1128, 1407, 1518, 1485, 1332, 1083, 762, 393, we have the equation

by =4by . — by + 4By by, i =120 1.

The solution of this equation has the form &, =4 —120i* +803i—30.
Similarly for other lines

b

2,0+

b

3,i+

by;.y =4i° —84i* +251i+987,i=1,..,.2n-7.

| =4° —108i* +587i+549, i =1,...,2n -3,
, =4i° —96i° +403i +872,i =1,...,2n -5,

In the general case, for arbitrary j, we have an expression
b =4 —ay5i° +aysi—ays, where the coefficients a, s, a5, a,5 are to be
determined. The sequence of coefficients with i* has a fairly obvious common term
a,s=12j-132. For other sequences, the rgf findrecur and rsolve operators are

required:

a5 =167 =264 +1051,
ays =85 176> +1051j-913.
Solutions are obtained for n = 5. To generalize the solution to an arbitrary

number of panels, it is required to repeat the output for other values of n. Omitting
the intermediate results we give the corresponding expressions:



n=6:
a,s =12j-156,

a5 =167 312 +1451,
y s =8j° —208;% +1451-1287,

n="7:

a5 =12;-180,

a5 =167 =360 +1915,

ays =8> =240, +1915,j 1725,

Summarizing these expressions for the general case, we obtain

a,, =12(j—1-2n),
ay, =167 —24(1+2n)j +32n* +48n+11,
., =87 —16(1+2n) j* +(32n° +48n+11) j—32n° —22n-3.

Together with the expression

b

Jei+j-1 = 413 - a2,ni2 + al,ni - aO,n
these coefficients constitute the main basic part of the matrix, the reflection of which
relative to the main and secondary diagonal gives the full matrix, whose eigenvalues
give the solution. For reflection on the main diagonal, use the ratios
b, =b . j=Llen2n-1i=j+1..2n-1

Elements that are symmetrical with respect to the secondary diagonal are
obtained using the relations
Bigyy =bayy o J =L 2n=1,i= j+1,..,.2n-1.

1

Results

The result of induction on the three parameters were the expressions for the
elements of the matrix, the eigenvalues of which give the oscillation frequencies of
the truss, whose inertial properties are modeled by weights in the nodes of the lower
belt, which allow only vertical displacements. The oscillation frequencies are
determined by the formula (3) as applied to trusses with given elastic and geometric
characteristics. For n = 2, we have the matrix



[32]:

n

75 90 57

The eigenvalues of the matrix are

4 =97,

Compliance matrix at n=3:

205
308
[3,] =% 315
250

137

Eigenvalues of this matrix:

A =91, &y =42, &y =107/3, 45 = 6(54+313).
When n = 4, the set of seven eigenvalues consists of three values (4) and

Jys = 3(1721118\/51\/5723614062\/5 );7,
Jo7 = 3(1721118\/5;\/5723614062\/5 )77.

308
520
558
452
250

90
n
57 90 75

132 90

315 250
558 452
657 558
558 520
315 308

5 =322£15V2)n.

137
250
315
308
205

>

“4)

)

It is noted that for all numbers of panels »n in the spectrum of natural

frequencies there is a value 4, =97, and for even n the values 4,; = 3(22+15\2)7

are also included in the spectrum. In addition, calculations show that for numbers n

multiple of three, the spectrum includes values (5), and for numbers » multiple of

four, the spectrum includes values of the spectrum for n = 4. It can be assumed that a

more general statement is true: the frequency spectrum of a truss with the number

n=kk, of panels includes formulas for the frequency spectra of trusses with the

number of panels & and k,. The assertion is verified for a number of numbers, but

in the general case it still requires proof. For n = 5, the curves of frequency versus

truss height reveal a maximum (Fig. 2)
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Fig. 2. The natural frequencies of the truss (rad /s), depending on the height 4
withn=>5

This solution was obtained for mass m = 100 kg, stiffness EF =2,0-10" N,
panel length a = 3 m and height of struts » = 1 m. The following regularity is noted
in the graphs: the frequency obtained from the eigenvalue 4 =97 present in the
solutions for any # is located in the middle of the spectrum . This is confirmed by
graphs plotted for other values of n. Analytical representation of the solution allows
finding the exact values of the extremal point. From the condition dew*/dh=0
where

o =1/ = h3EF

3m(a® +2bh* +c*)

3EF

that the maximum frequency @*,,, = —F——
3ym(3a+2b)

h=\/§a.

CONCLUSIONS

is reached when the height value

Methods of symbolic mathematics made it possible to find not only exact
expressions for the elements of the matrix that defines the eigenfrequencies of free
oscillations of loads in the truss nodes, but also to obtain analytical expressions for
the frequencies. In a numerical analysis of the results obtained, it was also found
that, regardless of the number of panels, the design under consideration has the same
oscillation frequency located in the middle of the spectrum. The comparative



simplicity of the solution also allowed us to find the exact expression for the
extreme point on the graph of the dependence of the average frequency on the height
of the truss. A significant simplification in the derivation of the desired formulas
turned out to be a technique based on the bisymmetric properties of the compliance
matrix, which reduces the calculation of all elements of the matrix to the calculation
of only the elements of its basic triangle with the subsequent reflection of elements
relative to the main and secondary diagonal. Certainly, the experience of the authors
in solving the problems of deflection of statically definable flat trusses in analytical
form by the method of induction [8—11] was useful for successful work. Compared
to these tasks, the solved problem of the oscillation frequencies of a system with
many degrees of freedom is significantly more difficult due to the three levels of
induction in rows and columns of the matrix and in the number of panels. So if in
the simple problem of deflection of the generalization of the result to an arbitrary
number of panels, it is necessary in analytical form to solve on average k problems
about the forces in the rods and the deflection of the truss, then with triple induction
of such problems already k.

Verification of the results obtained numerically.
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