Программа 21. Задача 37
| > | restart; |
| > | Graf:=proc(S,L,f,w) |
| > | [seq(v[S[-1],j]=v[S[1],j]- |
| > | add(L[i]*sin(f[i]-Pi/2*(j-1))*w[i],i=1..nops(f)),j=1..2)] |
| > | end: |
Неподвижные точки (нулевые скорости)
| > | v[C,1],v[C,2],v[A,2],v[K,2]:=0$4: |
| > | Gr1:=Graf([K,A,P,B,C],[r$4],[Pi/2,Phi,Phi,0],[w2,w2,w3,w3]): |
| > | eq1:=Gr1[1]; eq2:=Gr1[2]; |
| > | Gr2:=Graf([A,B,C],[2*r,r],[Phi,0],[w0,w3]): |
| > | eq3:=Gr2[1]; eq4:=Gr2[2]; |
| > | S:=solve({eq1,eq2,eq3,eq4},{w2,w3,v[K,1],v[A,1]}); assign(S): |
| > | J2:=m[2]*r^2/2:# Момент инерции |
| > | T1:=m[1]*v[K,1]^2/2:# Кинетическая энергия |
| > | T2:=m[2]*v[A,1]^2/2+J2*w2^2/2: |
| > | T:=factor(combine(T1+T2,trig)); |
| > | z1:=diff(T,w0): |
| > | z2:=diff(T,Phi): |
| > | with(PDEtools): declare(pfi(t)): |
| > | Phi:=phi(t); |
| > | w0:=diff(Phi,t); |
| > | Q:=-expand(M*w2/w0);# Обобщенная сила |
| > | Уравн:=collect(diff(z1,t)-z2,w0)=Q; |
| > | r:=1: m[1]:=1: m[2]:=2: M:=1: |
| > | НачУсл:=phi(0)=Pi/2,D(phi)(0)=0: |
| > | Sol:=dsolve({Уравн,НачУсл},phi(t),type=numeric,output=operator): |
| > | assign(Sol): |
| > | with(plots):with(plottools): |
| > | График1:=odeplot(Sol,[t,phi(t)],0..9,thickness=2): |
| > | График2:=odeplot(Sol,[t,w0],0..9): |
| > | display(График1,График2); |