
Постановка задачи: Плоский многозвенный механизм с одной степенью свободы приводится в движение кривошипом, который вращается против часовой стрелки с постоянной угловой скоростью. Найти скорости всех шарниров Размеры даны в сантиметрах.

Задача К-9.13.

Олиференко Ярослав

Решение: Определяем угловые скорости звеньев и скорости точек механизма.

Находим скорость точки А

$$V_A = \omega_{OA} \cdot OA = 4 \cdot 20 = 80 \, c\text{M/c}$$

Рассмотрим треугольник
$$\Delta ABP_2$$

Рассмотрим треугольник
$$\Delta ABP_2$$

$$\begin{cases} BP_2 = AB = 20cM \\ AP_2 = \sqrt{AB^2 + BP_2^2} = \sqrt{20^2 + 20^2} = 20\sqrt{2} \ cM \end{cases}$$

Рассмотрим треугольник ΔACP_2 По теореме синусов

$$\frac{CP_2}{\sin \alpha} = \frac{AP_2}{\sin \beta} = \frac{AC}{\sin \left(\frac{\pi}{2} - \beta + \alpha\right)} \Rightarrow \begin{cases} CP_2 = AP_2 \cdot \frac{\sin \alpha}{\sin \beta} \\ \frac{AP_2}{\sin \beta} = \frac{AC}{\cos(\beta - \alpha)} \end{cases} \Rightarrow \begin{cases} CP_2 = 22.36 \\ \beta = 63.43^\circ \end{cases}$$

Определяем угловую скорость стержня АС

$$\omega_{AC} = \frac{V_A}{AP_2} = \frac{80}{20\sqrt{2}} = 2.828 \ pad/c$$

Находим скорость точки С

$$V_C = \omega_{AC} \cdot CP_2 = 5.656 \cdot 22.36 = 126.5 \, cm/c$$

Находим скорость точки В

$$V_B = \omega_{AC} \cdot BP_2 = 5.656 \cdot 20 = 113.1 \text{ cm/c}$$

Рассмотрим треугольник
$$\Delta CP_3D$$

$$\begin{cases} \sin \beta = \frac{CD}{CP_3} \\ \cos \beta = \frac{DP_3}{CP_3} \end{cases} \Rightarrow \begin{cases} CP_3 = \frac{CD}{\sin \beta} = 16.77 \text{ cm} \\ DP_3 = CP_3 \cdot \cos \beta = \frac{CD}{\text{tg }\beta} = 7.503 \text{ cm} \end{cases}$$

Определяем угловую скорость стержня СD

$$\omega_{CD} = \frac{V_C}{CP_3} = 7.543 \, pa \partial/c$$

Находим скорость точки **D**

$$V_D = \omega_{CD} \cdot DP_3 = 56.60 \text{ cm/c}$$

Определяем угловую скорость стержня **BN**

$$\omega_{BN} = \frac{V_B}{BF + NF} = 1.131 \, pa \partial/c$$

Находим скорость точки **F**

$$V_F = \omega_{RN} \cdot NF = 56.55 \ cm/c$$

Рассмотрим треугольник
$$\Delta FP_5G$$

$$\begin{cases} FG = FP_5 = 25cM \\ GP_5 = \sqrt{FG^2 + FP_5^2} = \sqrt{25^2 + 25^2} = 25\sqrt{2} \ cM \end{cases}$$

Определяем угловую скорость стержня **FE**

$$\omega_{FE} = \frac{V_F}{FP_5} = 2.262 \ pao/c$$

Находим скорость точки G

$$V_G = \omega_{FF} \cdot GP_5 = 79.96 \ cm/c$$

Определяем угловую скорость стержня КС

$$\omega_{KG} = \frac{V_G}{KG} = \frac{79.96}{25} = 3.198 \ pad/c$$

Рассмотрим треугольник

$$\begin{cases} EP_5 = \sqrt{FP_5^2 + FE^2} = \sqrt{25^2 + 25^2} = 43.01 \text{ cm} \\ \cos \varphi = \frac{FE}{EP_5} \Rightarrow \varphi = \arccos \frac{FE}{EP_5} = 35.53^{\circ} \end{cases}$$

Находим скорость точки Е

$$V_E = \omega_{FE} \cdot EP_5 = 97.29 \ cm/c$$

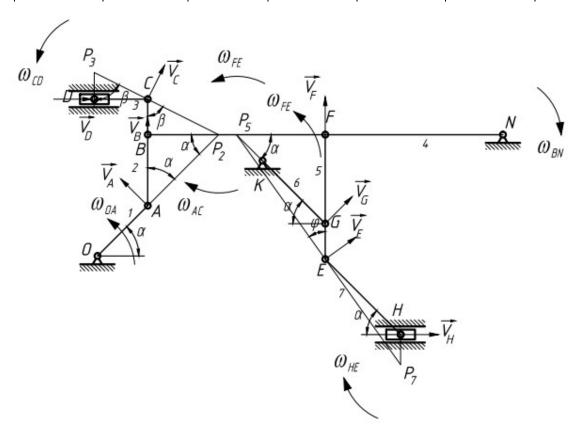
Рассмотрим треугольник ΔEHP_7

 $\frac{HE}{\sin\varphi} = \frac{EP_7}{\sin\left(\frac{\pi}{2} + \alpha\right)} = \frac{HP_7}{\sin\left(\pi - \varphi - \frac{\pi}{2} - \alpha\right)}$ По теореме синусов

$$\begin{cases} EP_7 = HE \cdot \frac{\cos \alpha}{\sin \varphi} \\ HP_7 = HE \cdot \frac{\cos(\varphi - \alpha)}{\sin \varphi} \end{cases} \Rightarrow \begin{cases} EP_7 = HE \cdot \frac{\cos \alpha}{\sin \varphi} = 36.50 \\ HP_7 = HE \cdot \frac{\cos(\varphi - \alpha)}{\sin \varphi} = 8.498 \end{cases}$$

Определяем угловую скорость стержня НЕ

$$\omega_{HE} = \frac{V_E}{EP_7} = 2.665 \ pad/c$$


Находим скорость точки Н

$$V_{H} = \omega_{HE} \cdot HP_{6} = 2.665 \cdot 8.498 = 22.65 \text{ cm/c}$$

Записываем ответ в табличной форме.

		$\omega_{\scriptscriptstyle CD}, pa\partial/c$				
$\omega_{BN} = 0.5656$	$\omega_{AC} = 2.828$	$\omega_{CD} = 2.373$	$\omega_{OA} = 4$	$\omega_{FE} = 1.131$	$\omega_{KG} = 1.599$	$\omega_{HE} = 0.2644$

$V_{\scriptscriptstyle A}, c_{\scriptscriptstyle M}/c$	$V_{\scriptscriptstyle B}, c$ M $/c$	V_{C} , c м $/c$	$V_{\scriptscriptstyle D}$, см/ c	$V_{\scriptscriptstyle E}, c$ м $/c$	$V_{_G}$, c м $/c$	$V_{_F}$, c м $/c$	$V_{\scriptscriptstyle H}, c$ м $/c$
$V_A = 80$	$V_B = 56.5684$	$V_C = 63.2435$	$V_{\rm D} = 28.2917$	$V_E = 48.6620$	$V_F = 28.2842$	$V_G = 39.9998$	$V_H = 11.3137$

