




$$\begin{array}{l} AM = 9t(2+\cos(\pi t/3)); \; t = 6 \text{ c}, \\ \omega_{OA} = 1.3 \; \frac{1}{c}, \\ OA = 100, \; AB = 324, \; BC = 200 \end{array}$$

Вводим неподвижную систему координат XY, совмещая её начало с положением шарнира О механизма в заданный момент времени. Вдоль стержня АВ направляем в сторону движения точки М подвижную ось U.

Зная закон относительного движения $\sigma(t) = 9t(2 + \cos(\pi t/3))$

определяем положение точки при t = 6 c: AM = $\sigma(6) = 162$ cм = AB\2

Определяем координаты шарниров в неподвижных осях координат:

XO = 0,

YO = 0,

XA = 0,

YA = OA = 100,

 $XB = AB \cos(30^{\circ}) = 162\sqrt{3}$,

 $YB = ABsin(30^{\circ}) + AO = 262,$

 $XC = ABcos(30^{\circ})-BCcos(60^{\circ})=162\sqrt{3}-100$,

 $YC = OA + ABsin(30^{\circ}) + BCsin(60^{\circ}) = 100\sqrt{3} + 262$

 $XM = 81\sqrt{3}$,

YM = 181.

Дифференцируя $\sigma(t)$ по времени, находим проекции относительной скорости и относительного ускорения на ось U

$$V \tau o \tau = \sigma' = 18 + 2\cos(\pi t/3) - 3t\sin(\pi t/3) = 27 \text{ cm/c}$$

a τ oτ =
$$\sigma'' = -t\pi^2 \approx -59,15$$
cm/c²

Угол между осями U и X равен 30°. Находим проекции на ось

$$X: V_{OT} x = V_{OTCOS}(30^{\circ}) = 23.38 \text{ cm/c},$$

$$V_{\text{OT Y}} = V_{\text{OTSin}(30^{\circ})} = 13.5$$

$$\mathbf{a}$$
 ot $\mathbf{x} = \mathbf{a}$ otcos(30°) = -6 $\sqrt{3}$ 2 π ^2 =-51.23cm/c^2,

$$aot Y = aotsin(30^\circ) = -29.5823cm/c^2$$

Решаем задачу о скоростях точек многозвенного механизма, используя уравнения 3 угловых скоростей:

$$\omega$$
OAz(XO - XA) + ω ABz(XA - XB) + ω BCz(XB - XC) = 0

$$\omega$$
OAz(YO - YA) + ω ABz(YA - YB) + ω BCz(YB - YC) = 0,

где по условию ω OAz = 1.3. Подставляя численные значения, получаем:

WABz= -0.2 рад/с

WBCz =-0.56 рад/с

$$\vec{v}_M = \vec{v}_A + \vec{\omega}_{AB} \times \overrightarrow{AM} = \vec{\omega}_{OA} \times \overrightarrow{OA} + \vec{\omega}_{AB} \times \overrightarrow{AM}$$

Переписываем это равенство в виде:

$$\vec{v}_{M} = \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & \omega_{OAz} \\ X_{A} - X_{O} & Y_{A} - Y_{O} & 0 \end{pmatrix} + \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & \omega_{ABz} \\ X_{M} - X_{A} & Y_{M} - Y_{A} & 0 \end{pmatrix}$$

Получаем

$$V_{Mx} = -113.8 cm/c$$

$$V_{My} = -28.059 \text{ cm/c}$$

$$V_{\Pi.x} = V_{Mx}, V_{\Pi.y} = V_{My}$$

Модуль скорости V_{Π} = √(12950.44+787.307) ≈ 117.208 м/с

Определяем проекции:

$$V_x = V_{OT} x + V_{\Pi.x} = -90.42 \text{m/c}$$

$$V_y = V_{OT} y + V_{\Pi,y} = -14.559 \text{ cm/c}$$

и модуль абсолютной скорости: V = V(8175.78+211.96) = 91.58 см/с

 ε ABz(XA - XB) + ε BCz(XB - XC) - ω ^2 OAz(YO - YA) - ω ^2 ABz(YA - YB) - ω ^2 BCz(YB - YC) = 0

 \mathbf{E} ABz(YA - YB) + \mathbf{E} BCz(YB - YC) + $\mathbf{\omega}$ 2 OAz(XO - XA) + $\mathbf{\omega}$ ^2 ABz(XA - XB) + $\mathbf{\omega}$ ^2 BCz(XB - XC) = 0 Находим ε ABz = 0.645 рад/с^2 . Вычисляем вектор ускорения той точки механизма, в которой в данный момент находится подвижная точка M. Это ускорение является

переносным для точки М. Учитывая, что **Е**ОАz = 0, записываем векторное равенство:

$$\vec{a}_M = \vec{a}_A + \vec{\varepsilon}_{AB} \times \overrightarrow{AM} + \vec{\omega}_{AB} \times \left(\vec{\omega}_{AB} \times \overrightarrow{AM} \right) = \vec{\omega}_{OA} \times \left(\vec{\omega}_{OA} \times \overrightarrow{OA} \right) + \vec{\varepsilon}_{AB} \times \overrightarrow{AM} + \vec{\omega}_{AB} \times \left(\vec{\omega}_{AB} \times \overrightarrow{AM} \right)$$

Раскрывая векторное произведение по аналогии с (1), вычисляем

aMx \approx -57.845см/с 2 , **a**My \approx -81.75 см/с 2 . Это переносное ускорение для точки M:

 $a_{\Pi,X} = a_{\Pi,Y} = a_{$

Находим ускорение Кориолиса:

$$a_K = 2\omega_n \times v_{om}$$

где ωп - вектор угловой скорости звена АВ, по которому движется точка:

$$a_K = 2 \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & \omega_{ABz} \\ v_{om.x} & v_{om.y} & 0 \end{pmatrix}$$

Вычисляем

 $a_{KX} = -2\omega_{ABz}V_{OT}Y = 5.4$

aKy = 2**ω**ABz**V**oτ x=-9.352.

Модуль ускорения Кориолиса:

 $|\mathbf{a}K| = \sqrt{(29.16+87.46)} \approx 10.799 \text{ cm/c2}.$

Вычисляем абсолютное ускорение

 $a = a_{ot} + a_{n} + a_{K}$:

$$\mathbf{a}x = \mathbf{a}$$
ot $x + \mathbf{a}$ n. $x + \mathbf{a}$ K $x = -51.23 - 57.845 + 5.4 = -103.67$ cm/c2

 $a_y = -29.5823 - 81.75 - 9.352 = -120.68 \text{ cm/c}^2$

И его модуль:
a = 159.095 cm/c2
Ответы:
W e=-0,2рад/с
Є e=0,645рад/c2
V т r=27cм/c
V x e=-113.8cm/c
V у e=-28.059см/с
V e=117.208cm/c
V =91.58cm/c
а т r =-59.15см/с2
a e = 100.145 cm/c2
a C=10.8cm/c2
a =159.095 cm/c2
a x r=-51.23cm/c2
a y r=-29.58см/с2
a x e =-57.845cm/c 2
a y e= -81.75 cm/c 2
a x =-103.67cm/c2
a y=-120.68 см/с2