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Abstract – A criterion of creep buckling based on singular points of the deformation

process is suggested. The theory of transient creep with power law strain hardening is

examined. A moment of the history of the deformation process is said to be a singular

point if the initial value of speed, acceleration or some time-derivative of deflection

corresponds to infinity of deflection at this moment. It is shown that the problem

of singular points reduces to an eigenvalue problem. The first point of the sequence

coincides with the Rabotnov and Shesterikov criterion.

1. INTRODUCTION

Constructions tend to buckling at compressive load. In the condition of

the elastic or plastic deformation, this phenomenon is bound up with bifurca-

tion of state or process of loading. The bifurcation approach for estimation of

the critical time is based on a linear equation and is independent of an initial

imperfection value. Thus the first criterions of creep buckling were based on

particular hypothesis by analogy with elastic (Gerard [1]) or plastic (Shanley

[2]) instability. Comprehensive reviews of development in this field were given

by Hoff [3], Kurshin [4], Arutyunian, Drozdov, and Kolmanovsky [5].

The first approach to the creep buckling problem, similar to the bifurcation

method, was carried out by Rabotnov and Shesterikov [6], where the deflection

of a construction and its speed were analyzed. Later Klyushnikov [7,8] has gen-

eralized this approach to a high time-derivative. The sequence obtained (pseudo

bifurcation points) turns out to be increasing, and its first point corresponds

to the Rabotnov and Shesterikov criterion. This fact stimulates the advance

of the bifurcation theory because Rabotnov- Shesterikov’s point underestimates

the creep collapse time. Meanwhile the pseudo bifurcation sequence was un-

bounded and Klyushnikov has advanced an assumption that the system buckles

after it safely has passed some points of pseudo bifurcation.

The mathematical formalism used in the derivation of pseudo bifurcation

points is based on the hypothesis of independence of the time-derivatives of the

deflection. This assumption simplifies the solution to the problem, especially in

a three-dimensional case. In this paper, another definition of pseudo bifurcation

points with due account of the linkage between time-derivatives of the deflection

is suggested. The new points are named singular. The algorithm to find such

points for the creep of a centrally loaded column is given.

2. DEFINITION OF SINGULAR POINTS

Let us consider creep of a simply supported column of length l compressed

by the force T . A uniaxially nonlinear constitutive law will be employed here

in the form [9]

ṗpα = f(σ), (1)

where p = ε−σ/E is the creep strain, a dot indicates differentiation with respect
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to time ṗ = dp/dt, α is a material constant, f(σ) is a stress function (power,

exponential, etc.).

Some disturbance whose nature is not investigated here results in the dis-

placement of an initially straight column and increments in the stress ∆σ and

creep strain ∆p. Linearization of the constitutive law (1) gives

pα∆ṗ + αṗpα−1∆p = f ′∆σ, (2)

where f ′ = df/dσ. Due to Bernoulli’s hypothesis and static equilibrium equation

we have
∫

A

∆εdA = J∆v,yy ,

∫

A

∆σdA = −T∆v, (3)

wherein z is the coordinate in the plane of bending, y is the axial coordinate,

0 < y < l; ∆v(y) is the deflection at any point y, ∆v,yy is the second-order

derivative of the deflection with respect to y; A and J are the cross sectional

area and second moment of inertia, respectively. Substituting eqs. (3) into

∆p = ∆ε − ∆σ/E yields

∫

A

∆pzdA = T∆v/E + J∆v,yy . (4)

Let us rewrite (2) in terms of the deflection and its speed with due of eqs.(3) and

(4). After the multiplication (2) by z and integration over the cross-sectional

area using eqn(1) and the fact that the quantities without symbol ∆ are inde-

pendent of z, we have

Jp∆v̇,yy +Tp∆v̇/E + αṗ(T∆v/E + J∆v,yy ) = −Tpṗ∆vf ′/f. (5)

The deflection is taken in the form ∆v = U0 sin µy to satisfy boundary conditions

∆v = 0 at y = 0 and y = l; µ = mp/l, (m = 1, 2..). Hence from eqn (5) we

obtain ∆v̇ = (ṗ/p)U1 sinµy.

Let us introduce the quantity ξ as a measure of pure compression process of

a theoretically straight column before buckling

ξ = p(f ′/f)Eσ/(σ0 − σ), (6)

where σ0 = EJµ2/A is the critical stress of an elastic column. Substituting

the form of the deflection U0 into (5), we have the equation for the amplitudes

U0 and U1

(α − ξ)U0 + U1 = 0. (7)

Thus, the increments of the deflection U0 and its speed U1 are connected by

eqn (7). Vanishing of the coefficient α − ξ at U0 corresponds to the Rabotnov

and Shesterikov criterion [6] and defines a special point characterized by the

parameter ξ1 = α. Critical sense of this state occurs from the fact that before
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ξ1 the deflection of the column decreases in the following motion, but the same

disturbance applied after ξ1 gives an increasing deflection. Later [7] this point

was named as the pseudo bifurcation point of the zeroth order (PB0 after the

order of time-derivative that is ambiguous in critical point) and other points of

the higher orders (PBN) were carried out.

Note that the point ξ1 has another interpretation. The speed U1 given at

the point ξ1 according to eqn(7) leads to the infinity of the deflection U0. Just

in such an interpretation the singular points will be defined here. The point ξ

we shall name the singular point of the first order.

Reasoning along similar lines, we can propose the existence of the second

singular point ξ2 that is characterized by decreasing of the given speed before

ξ2 and increasing after it. In another interpretation this point corresponds to

the infinity of the speed of the deflection when the acceleration is assigned in ξ2.

It is necessary to have the equation containing the acceleration of the deflection.

If we raise the order of the constitutive law

p̈pα + αṗ2pα−1 = f ′σ̇, (8)

the acceleration will appear in the equation for amplitudes. In the case of

constant loading (Ṫ = σ̇A = 0) for small increments, we have from eqn (8)

∆p̈pα + 2αṗpα−1∆ṗ + α[p̈p + (α − 1)ṗ2]pα−2∆p = f ′∆σ̇. (9)

At the condition σ̇ = 0, eqn(8) leads the identity

p̈ = −αṗ2/p (10)

correct for the quantities of a primary process.

Substituting this relation into eqn (9) and repeating the above procedure

with use of eqs.(3) and (4), and similar equations for the speeds of the stress

and creep strain increments, we have

−αU0 + (2α − ξ)U1 + U2 = 0. (11)

An alternative way of developing this equation is time differentiating of eqn

(2.7).

The amplitude of the acceleration we introduce in the form

∆v̈ = (ṗ/p)2U2 sin µy. (12)

The two equations (8) and (11) form a system for three quantities U0, U1, and

U2. Taking the amplitude of the acceleration U2 to be known and rearranging

it to the right side of the system, we can write it in the form

[

α − ξ 1
−α 2α − ξ

] [

U0

U1

]

= −

[

0
1

]

U2. (13)
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The system has the solution

U0 = U2/B2, U1 = −(α − ξ)U2/B2, (14)

where B2 = ξ2 − 3αξ + α(1 + 2α) is the determinant of the matrix in eqn(13).

Let us define the second order singular point ξ2 as such a moment of the creep

process, when the initial acceleration causes the infinity of the initial deflection

and speed. On the bases of solutions (14), ξ2 is a root of the equation B2 = 0

ξ = (3α ± (α2 − 4α)1/2)/2. (15)

Note that the difference between a number of variables Uk appeared in sys-

tem (13) and its order is equal to the order of the higher time-derivative in

the assumed constitutive law, and agree with the number of independent initial

conditions on the perturbation motion. In the problem considered, this number

is 1.

One can expand the system (13) by rising the order of the constitutive law.

Let us derive it for an arbitrary order. To display a generality of its construction,

it is sufficient to restrict by the fourth order. Let us differentiate eqn(8) with

respect to time

p(3)pα + 3αp̈ṗpα−1 + α(α − 1)ṗ3pα−2 = f ′′σ̇2 + f ′σ̈. (16)

In view of the condition σ̇ = 0, eqn (16) leads the identity for the funda-

mental process

p(3) = ṗ3α(2α + 1)/p2. (17)

Equation (16) linearized with help of eqs.(10) and (17) in terms of Uk takes

the form

α(α + 2)U0 − 3αU1 + (3α − ξ)U2 + U3 = 0, (18)

where U3 is introduced by the formula similar to (12). In much the same way

we, obtain the fourth equation

F4U0 + 4F3U1 + 6F2U2 + (4F1 − ξ)U3 + U4 = 0. (19)

The functions Fi = Fi(p) are the coefficients in eqs. (8), (11), (18), and (19)

F0 = 1, F1 = α, F2 = −α, F3 = α(α + 2), F4 = −α(α + 2)(2α + 3), ...

There is the recurrent formula for FN

FN+1 = −[N + α(N − 1)]FN , N = 1, 2, 3....

We can write the system of eqs. (8), (11),(18) and (19) in the matrix form








F1 − ξ 1 0 0
F2 2F1 − ξ 1 0
F3 3F2 3F1 − ξ 1
F4 4F3 6F2 4F1 − ξ

















U0

U1

U2

U3









= −









0
0
0
1









U4, (20)
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There exist four singular points ξ1...ξ4 resulting from the system (20) ac-

cording to the order of time-derivative of the deflection amplitude Uk which is

taken as the known value in the right side of the system. Particularly, taking

U2 to be known in the initial condition of perturbation motion, we have









F1 − ξ 1 0 0
F2 2F1 − ξ 0 0
F3 3F2 1 0
F4 4F3 4F1 − ξ 1

















U0

U1

U3

U4









= −









0
1
3F1 − ξ
6F2









U2, (21)

The determinant of this system is (F1 − ξ)(2F1 − ξ) − F2 = B2 and agrees

with that of the system (13). Its vanishing corresponds to the singular point

ξ2. Moreover, from the solution of (21), it is clear that not only U0 and U1

tend to the infinity at the moment ξ2 but the high derivative U3 also does.

Generalizing this fact, we give the following definition of singular points. The N-

order singular point is such a moment of creep history at which the initial value

of the N-order time-derivative of the deflection amplitude causes the infinity of

the initial deflection and its time-derivatives Ui, (i 6= N).

System (20) (i.e. fundamental system) may be rewritten in the form

[M − ξI]Ū = Z̄.

All the components Zi in the right side are equal to zero except ZN = −UN ;

I is the identity matrix. Elements of matrix M are

mij = Ci
j−1Fi−j+1, Ci

j = i!/[j!(i − j)!], i, j = 1, 2...N,

where Fi = 0 if i < 0. The rule of taking summation over a repeating index is

not accepted.

The problem of the singular points reduces to the eigenvalue problem of the

matrix M. We write the secular polynomials to solve it [10]

B1 = ξ − α, B2 = ξ2 − 3ξα + α(2α + 1),
B3 = ξ3 − 6αξ2 + α(4 + 11α)ξ − α(2α + 1)(3α + 2),
B4 = ξ4 − 10αξ3 + 5α(2 + 7α)ξ2−

5α(2α + 1)(5α + 2)ξ + α(2α + 1)(3α + 2)(4α + 3).

The recurrent relation is true

BN = ξBN−1 −

N−1
∑

i=0

BiC
N
i FN−i, B0 = 1, N = 1, 2, 3...

The roots ξN of the polynomials BN (N < 7) against α are plotted on Fig.1.

The odd polynomials always have at last one root for any α but the even ones

have a solution in particular range of α. For example B2 has the solution (15)
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if α > 4, and polynomials B4 and B6 have any solutions if α > 2.4 and 1.9,

respectively, what may be found out from the numerical solution.

Let us compare the results obtained with the results of the previous ap-

proaches. For most of them, the predicted critical creep strain may be repre-

sented in the form p = γ(σ0 − σ)/E. The dimensionless coefficient γ is shown

in the comparative table.

The idea of Kurshin’s approach [4] to creep buckling problem is close to the

Rabotnov and Shesterikov’s one, to the fist-order pseudo bifurcation point PB1,

and second-order singular point ξ2. Its foundation connected with vanishing of

the acceleration of the perturbation at the critical moment ξ = ξ∗. It was noted

that if a disturbance is applied to a column before ξ∗ (we use ξ as a time scale)

when the creep strains are rather small, then the lateral deflection increases slug-

gishly. But if the motion begins after ξ∗, the deflection is accelerated. Both of

two similar criterions [4] depending on initial conditions of perturbation motion

are presented in table in separate rows.

According to eqn(6) for the N-order singular point, we have

p = ξN
(σ0 − σ)f

f ′Eσ
, (22)

where ξN are the roots of the polynomials BN .

3. COMPARISON WITH THE EXPERIMENTAL DATA

The solution of the singular point problem of the compressed column is

plotted on the axis of the dimensionless load ω = σ/σ0 and relative strain

ε0 = pE/σ0 (Fig.2).

Let us consider the experiment by Chapman, J.C., Erickson, B. and Hoff

N.J. [11]. Creep buckling tests were conducted on aluminum alloy 2024-T4

columns in axial compression at 260C◦. The data for specimens are as follows:

l = 96.5mm, A = 12.7 × 6.35mm2. The theoretical value of the elastic critical

stress σ0 = 208.8MPa (it does not even approach in the experiment) is used

in calculations. The results are fitted by the creep constitutive equation (1)

with f(σ) = Cσn, n = 9, α = 2.4, C = 7.9 × 10−31MPa−9min−1, E = 5.87 ×

104MPa. The quantity ξ has the following values: ξ1 = 2.40, ξ3 = 4.55,

ξ5 = 5.77, ξ6 = 6.10, ξ7 = 6.38 (we use only the first roots of the polynomials).

Corresponding lines ε0 = ξN (1 − ω)/n pass through ω = 1, ε0 = 0. The

experimental data are marked off by circles. It is evident that the experiment

is in close agreement with the curves ξ5, ξ6 and ξ7.

4. CONCLUSION

The theory suggested is designed only for analysis of perfect systems buck-

ling. This is the distinctive feature of the singular points theory. We do not
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overlook the familiar point of view based on the idea of unavoidable initial im-

perfections that grew with time under the applied load and then cause buckling.

It is reasonable to expect that there exist systems (or will exist in future) with

negligibly small imperfection for which the theory of initial imperfection will

fail. In this case the singular points theory is extremely useful.

Criterion γ
f(σ) f = Cσn α = 2.4

n = 9
Gerard [1] 1 1 1.000
Shanley[2] (1 + α)f/(f ′σ) (1 + α)/n 0.378
Kurshin[4] 1. 2αf/(f ′σ) 2α/n 0.533

2. (1 + 2α)f/(f ′σ) (1 + 2α)/n 0.644
Rabotnov,
Shesterikov[6] αf/(f ′σ) α/n 0.267
Klyushnikov[7] (N + 1)αf/(f ′σ) (N + 1)α/n

1. α/n 0.267
2. 2α/n 0.533
3. 3α/n 0.800
4. 4α/n 1.067

Singular points ξNf/(f ′σ) ξN/n
1. ξ1/n 0.267
2. ξ2/n -
3. ξ3/n 0.505
4. ξ4/n -
5. ξ5/n 0.641
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Fig 1. Singular points ξ of the order from 1 to 7 vs the material constant α.

Fig 2. Comparison of the creep buckling dimensionless load ω = σ/σ0 of a

column corresponding to the singular points of the order N from 1 to 7 with the

experimental data from reference [11].
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