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Theorem of the Change in the Kinetic Energy of a System
§147. Kinetic Energy of a System
The kinetic energy of a system is defined as a scalar quantity equal to the

arithmetical sum of the kinetic energies of all the particles of the system:

T =
∑

k

mkv2

k

2
(41)

Kinetic energy is a characteristic of both the translational and rotational
motion of a system, which is why the theorem of the change in kinetic energy is
so frequently used in problem solutions. The main difference between and the
previously introduced characteristics Q and K0 is that kinetic energy is a scalar
quantity, and essentially a positive one. It, therefore, does not depend on the
directions of the absolute motions of parts of a system and does not characterise
the changes in these directions.

Another important point should be noted. Internal forces act on the parts
of a system in mutually opposite directions. For this reason, as we have seen,
they do not change the vector parameters Q and K0. But if, under the action of
internal forces, the speeds of the particles of a system change, the quantity will
change too. Consequently, the kinetic energy of a system differs further from
the quantities Q and K0 in that it is affected by the action of both external and
internal forces.

If a system consists of several bodies, its kinetic energy is, evidently, equal
to the sum of the kinetic energies of all the bodies:

T =
∑

k

Tk.

Let us develop the equations for computing the kinetic energy of a body in
different types of motion.

(1) Translational Motion. In this case all the points of a body have the
same velocity, which is equal to the velocity of the centre of mass.

Therefore, for any point k we have vh = vc, and Eq. (41) gives:

Ttrans =
∑ mkv2

C

2
=

1

2

(
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)

v2

C

or

Ttrans =
1

2
Mv2

C . (42)

Thus, in translational motion, the kinetic energy of a body is equal to half
the product of the body’s mass and the square of the velocity of the centre of
mass. The value of does not depend on the direction of motion.

(2) Rotational Motion. The velocity of any point of a body rotating about
an axis Oz (see Fig. 310) is vk = ωhk, where hk is the distance of the point
from the axis of rotation and is the angular velocity of the body. Substituting

1



this expression into Eq. (41) and taking the common multipliers outside of the
parentheses, we obtain:

Trotation =
∑ mkω2h2

k

2
=

1

2

(

∑

mkh2

k

)

ω2.

The term in the parentheses is the moment of inertia of the body with respect
to axis z4. Thus, we finally obtain:

Trotation =
1

2
Jzω

2. (43)

i.e., in rotational motion, the kinetic energy of a body is equal to half the
product of the body’s moment of inertia with respect to the axis of rotation
and the square of its angular velocity. The value of does not depend on the
direction of the rotation.

(3) Plane Motion1. In plane motion, the velocities of all the points of a
body are at any instant directed as if the body were rotating about an axis
perpendicular to the plane of motion and passing through the instantaneous
centre of zero velocity P (Fig. 316). Hence, by Eq. (43),

Tplane =
1

2
Jpω

2, (43′)

where JP is the moment of inertia of the body with respect to the instantaneous
axis of rotation, and ω is the angular velocity of the body.

The quantity JP in Eq. (43’) is variable, as the position of the centre P

continuously changes with the motion of the body. Let us introduce instead of
JP a constant moment of inertia Jc with respect to an axis through the centre of
mass C of the body. By the parallel axis theorem (§132), JP = Jc +Md2, where
d = PC. Substituting this expression for JP into Eq. (43’) and taking into
account that point P is the instantaneous centre of zero velocity and therefore
ωd = ωPC = vC , where vc is the velocity of the centre of mass, we obtain
finally:

Tplane =
1

2
Mv2

C +
1

2
Jpω

2, (44)

Thus, in plane motion, the kinetic energy of a body is equal to the kinetic
energy of translation of the centre of mass plus the kinetic energy of rotation
relative to the centre of mass.

(4)* The Most General Motion of a Body . Taking the centre of mass
as the pole (Fig. 317), the most general motion of a body is a combination of a
translation with the velocity vc of the pole and

1This case can be developed as a particular case of the most general motion of a rigid body
discussed in the following item.
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Fig. 316 Fig. 317
a rotation about the instantaneous axis CP through the pole (see §88). Then,
as shown in the course of kinematics, the velocity vk of any point of the body
is equal to the geometrical sum of the velocity vc of the pole and the velocity
v′k of the point in its rotation with the body about axis CP :

~vk = ~vc + ~v′k.

In magnitude v′k = ωhk, where hk is the distance of the point from axis CP

and is the absolute angular velocity of the body about that axis. It follows
from this that2

v2

k = ~v2

k = (~vc + ~v′k)2 = v2

c + v′
2

k + 2~vc · ~v′k.

Substituting this expression into Eq. (41) and taking into account that
v′k = ωhk, we find:

T =
1

2

(

∑

mk

)

v2

C +
1

2

(

∑

mkh2

k

)

ω2 + ~vc ·
∑

mk
~v′k,

where the common multipliers have been taken outside of the parentheses.
In this equation, the term in the first parentheses gives the mass M of

the body and the term in the second parentheses gives the moment of inertia
JCP of the body with respect to the instantaneous axis CP . In the last term
∑

mk
~v′k = 0 as it represents the linear momentum of the body in its rotation

about axis CP , which passes through the centre of mass (see §138).
Therefore, we finally have:

T =
1

2
Mv2

c +
1

2
JCP ω2. (45)

Thus, in the most general motion of a body, the kinetic energy is equal to the
kinetic energy of translation of the centre of mass of the body plus the kinetic
energy of rotation about an axis through the centre of mass.

If the pole is taken not in the centre of mass but in another point A such
that axis AA′ does not pass through the centre of mass, then for this axis
∑

mk
~v′k 6= 0, and we cannot develop an equation of the form (45) (see Problem

136).

2From the definition of the scalar product of two vectors (see footnote on p. 300) it follows
that v2 = ~v · ~v = vv cos 0 = v2, i.e., the scalar square of a vector is equal to the square of its
magnitude. This result has been employed here.
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