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Abstract: 
The object of research is a new truss scheme of a statically determinate dome structure. The 

purpose of the study is to derive formulas for the dependences of the deflection under the action of a 
uniform load and the first frequency of natural vibrations on the number of panels, sizes, and masses 
concentrated in the truss nodes. Method. The forces in the truss rods are found from the equilibrium 
equations of the nodes. The system of equations also includes the reactions of vertical supports 
located along the contour of the structure. It is shown that the distribution of forces over the structure 
rods does not depend on the number of panels. The deflection values and stiffness of the truss 
structure are calculated using the Maxwell – Mohr formula. The lower analytical estimate of the first 
frequency is obtained by the Dunkerley method, the upper one by the Rayleigh energy method. As a 
form of truss deflection in the Rayleigh method, the deflection from the action of a uniformly distributed 
load is taken. Only vertical oscillations of the weights are assumed. Results. The dependence of the 
solution on the number of panels is obtained by generalizing a series of solutions for trusses with a 
successively increasing number of panels. The solution uses operators of the Maple computer 
mathematics system. Graphs of the dependence of the deflection on the number of panels for different 
truss heights are plotted. The horizontal asymptote of the solution of the deflection problem is found. 
The value for the first natural frequency is compared with the numerical solution obtained from the 
analysis of the entire spectrum of natural frequencies of the vertical oscillations of the mass system 
located in the truss nodes. The frequency equation is compiled and solved using the eigenvalue search 
operators in the Maple system. It is shown that the lower analytical estimate based on the calculation of 
partial frequencies differs from the numerical solution by no more than 37%, while the upper estimate 
has an error of 7%. In this case, the formula for the lower Dunkerley frequency estimate turns out to be 
more compact. The natural frequency spectrum of the truss is analyzed. Isolines were found in the set 
of frequencies for a series of regular trusses. 

 

1 Introduction 

Schemes of spatial regular statically determinate trusses are quite rare [1], [2],  Calculation 
methods using symbolic mathematics, for example, Maple, which has special operators for solving 
systems of linear equations in the symbolic form [3], apply to such constructions. If the goal is to obtain 
an analytical solution in the form of a closed formula, then when modeling structures, it is necessary to 
make several simplifications. As a rule, the construction is simplified to a statically determinate one. In 
some cases, the construction, for example, a truss, is statically determinate and completely satisfies 
the designer. If at the same time it is regular, that is, it contains periodically repeating structural 
elements, then for such a design it is possible to obtain calculation formulas for an arbitrary number of 
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repeating elements. Regular trusses are planar or spatial trusses with the same panels. The number of 
panels (construction order) can be very large. In this case, the analytical solution has a great 
advantage over the numerical one, not only due to saving computation time, but also due to the fact 
that numerical solutions can accumulate rounding errors. This affects the calculations of large-sized 
systems. The method of induction is used to obtain calculation formulas for deflection, forces in rods or 
frequencies of natural oscillations for an arbitrary number of panels. Analytical solutions are especially 
effective in truss optimization problems [4], [5]. 

 Solutions for deformations of planar trusses with an arbitrary number of panels are obtained 
inductively and some problems on natural frequencies of regular structures are solved [6]–[8]. The 
lower limit of the first frequency of natural vibrations of a spatial cantilever beam, depending on the 
number of panels, was obtained by induction in [9]. Jaya's no-parameter algorithm (PFJA) is used in 
[10] to optimize the size and layout of planar and three-dimensional trusses, subject to natural 
frequency constraints.  

Great contribution to the development of the theory of calculation and optimization of regular rod 
systems contributed by A. Kaveh [11], [12]. Article [13] proposes multicriteria problems of structural 
optimization of trusses with a combination of new contradictory objective functions and constraints, 
such as natural frequencies and load factors, taking into account the overall stability of the structure.  In 
[14], [15] in analytical form, the deflections of planar arched trusses are calculated by induction. The 
obtained formulas for the deflection after some transformations can also be used to find the natural 
frequency of oscillations using the Dunkerley method.   It has been noted [16] that the lower bound 
obtained by the Dunkerley method depends on the number of panels and gives less accuracy than the 
Rayleigh method. Nonlinear oscillations of a rotating circular spatial truss (antenna) subjected to 
thermal excitation were studied in [17]. An analytical solution can be a convenient way to test numerical 
solutions, which most often use the finite element method.  

Known works that deal with pyramidal trusses usually use numerical calculation methods [18]. In 
[19]–[21] the properties of pyramidal trusses are studied in connection with the design of structural 
panels in which trusses act as reinforcement.  

In [22] in numerical and experimental form an impact on a sandwich plate consisting of the 
simplest pyramids is considered. 

Very often, for dynamic analysis, simplified models are used, consisting of rods connected in a 
bundle at the top in the form of a pyramid, but without any lattice  [18].  

In [23], nonlinear vibrations of a flat steel roof truss were studied during vibrations caused by a 
sudden failure of one of the load-bearing elements. 

There are no analytical studies of deformations and oscillation frequencies of spatial trusses, 
leading to simple calculation formulas. 

In this paper, a new scheme of a statically determined dome-type spatial truss is proposed and 
formulas are derived for calculating the deflection of the top of the dome and the boundaries of the first 
natural frequency for an arbitrary number of panels. The spectrum of natural frequencies is studied 
numerically. The proposed construction can serve as a basis for complicated statically indeterminate 
systems of this type. 

. 

2 Materials and Methods 

2.1 Truss scheme 
The truss in the form of a regular pyramid 

1 2
2( )h h  high with a triangular base side na contains 

18
s

n n  rods, including 3( 1)n   vertical support posts 
1

h  high located along the outer contour of the 

structure and 3( 2)n   posts 2
1

h   high supporting the upper contour (Fig. 1, 2). 
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Fig 1. Truss scheme, n = 4, vertical load 

 
Fig. 2. Truss dimensions, n=3 

The lower contour consists of 3( 2)n   rods of length a, the upper one consists of 3( 1)n   similar 

rods. The braces connecting the contours have a length of 2 2/ 3a h . Corner node A rests on a 
spherical support hinge, modeled by three mutually perpendicular rods. Node B is a cylindrical hinge 
corresponding to two support rods, one of which is a vertical post. The following ratios of sizes are 
chosen: 

1 2
, ( 1) / 2.h h h n h    All structure rods are hinged. An analytical calculation of the natural 

frequencies of a rectangular spatial cover with a similar structure by the Dunkerley method was 
performed in [24]. The problem of optimizing a spatial truss of 25 rods is solved in [25], [26]. 

To calculate the forces in the rods, the coordinates of the nodes are entered into a program 
written in the language of symbolic mathematics Maple [27], taking the origin of coordinates at node A 
(Fig. 3). 
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Fig. 3. Numbers of knots and rods of contours 

The coordinates of the nodes of the lower contour look like this:   

2 2 2

( 1), 0, 0,

(2 1) / 2, ( 1) 3 / 2, 0,

( 1) / 2, ( 1) 3 / 2, 0, 1,.., .

i i i

i n i n i n

i n i n i n

x a i y z

x a n i y a i z

x a n i y a n i z i n
  

  

   

     

       

 (1) 

The coordinates of the nodes of the upper (smaller) contour: 

3 3

4 1 4 1 4 1

5 2 5 2 5 2

(2 1) / 2, ( 1) 3 / 6, ,

(2 ) / 2, (3 2) 3 / 6, ,

( 1) / 2, (3 3 1) 3 / 6, , 1,.., 1.

i n i n i n

i n i n i n

i n i n i n

x a i y a i z h

x a n i y a i z h

x a n i y a n i z h i n

  

     

     

    

    

        

 (2) 

Vertex C coordinate:  

6 2 6 2 3 1 4 5 1 6 2
/ 2, ( ) / 3, .

n n n n n n
x na y y y y z nh          (3) 

The lattice configuration is introduced using special ordered lists of the numbers of the ends of 
the corresponding rods, by analogy with the assignment of graphs in discrete mathematics. The bars of 
the lower chord, for example, are encoded by the following lists of vertices 

3
[ , 1], 1,.., 3 1, [3 ,1].

i n
i i i n n        (4) 

Upper chord rod coding: 

3 6 3
[ 3 , 3 1], 1,.., 3 4, [3 1,6 3].

i n n
i n i n i n n n             (5) 

Similarly, other rods are encoded in cycles according to the number of rods. 
2.2 Calculation of forces in elements 

The system of equations for the equilibrium of nodes in the projection on the coordinate axes has 
a matrix form GS Ψ , where G  is the matrix of coefficients (directing cosines of the forces calculated 
from the coordinates of the nodes), S  is the vector of unknown forces and reactions of the supports, 
Ψ  is the vector of loads on the nodes. In the elements of the load vector of the form 

3 2i , where i is 

the number of the node, the loads on node i in the projection onto the x-axis are written. Elements 
3 1i  

contain projections of external forces on the y-axis. Vertical loads are recorded in elements 
3i

 . 
 Based on the data on the coordinates of the nodes and the structure of the connection of the 

rods, the projections of unit force vectors in the equilibrium equations of the nodes in the projection on 
the coordinate axes are calculated                   

,1 ,2 ,1 ,2 ,1 ,2, , ,
( ) / , ( ) / , ( ) / , 1,..., 3,

i i i i i ix i i y i i z i i s
x x l y y l z z l i n                (6) 
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here 
,1 ,2 ,1 ,2 ,1 ,2

2 2 2( ) ( ) ( )
i i i i i ii

l x x y y z z            is the length of the rod i. The number of rods also 

includes three horizontal support rods at corners A and B. The matrix of coefficients of equilibrium 
equations in projections is filled in rows. Every three lines correspond to the projection equations on the 
x, y, and z axes, respectively:

 
,1 ,1 ,1

,2 ,2 ,2

3 2, , 3 1, , 3 , ,

3 2, , 3 1, , 3 , ,

, , ,

, , .
i i i

i i i

i x i i y i i z i

i x i i y i i z i

G G G

G G G

  

  
    

    

  

  
 (7) 

In the case of a uniform vertical nodal load (Fig. 1), non-zero elements of the load vector have the 
form: 

3
, 1,..., 6 1.

i
P i n    The numerical calculation of forces for a structure with 3n   and 

dimensions 4.0m, 1.0ma h  gives a picture of the distribution of forces shown in figure 4. 
Tensioned bars are highlighted in red, compressed bars are highlighted in blue. The thickness of the 
segments is conditionally proportional to the force modules in the corresponding rods. The force value 
is given with the sign, referred to the P value, and rounded to two significant digits. 

The lower chord is stretched, the upper chord and side ribs are compressed. The braces 
connecting the chords are not stressed under such a load. The truss has an interesting feature. The 
forces in the rods from a uniform load do not depend on the number of panels. The compressive forces 
in the rods of the upper contour for any n are equal to / (6 )aP h . The greatest tensile forces are 
observed in the lower chord: 7 / (9 )aP h . The most compressed are the lower corner ribs 

6 2 7 2 8 2
7 / (9 ),

n n n
S S S Pc h       (8) 

where 2 23 9c a h  . 
The forces in the support posts A, B, C do not depend on the dimensions of the structure: 

12 4 13 4 14 4
10 / 3.

n n n
S S S P       The reactions of the supports of the intermediate posts along the 
outer (lower) and inner (upper) contours are equal to P. 

 
Fig. 4. Distribution of forces in the rods 
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2.3 Deflection 
We derive the formula for the dependence of the deflection of the top C on the dimensions of the 

structure, the load, and the number of panels. Deflection 
n

  refers to the vertical displacement of node 
C. The Maxwell – Mohr formula hase the form 

1

,
sn

j j j
n

j

S s l
P

EF

    (9) 

where 
j

S  is the force in the j-th rod from the action of the load, 
j

s  is the force in the rod from the action 

of a single vertical force applied to the vertex C, 
j
l  is the length of the rod, E is the modulus of elasticity 

of the rods, F is the cross-sectional area. The summation is carried out over all the bars of the 
structure. It is assumed that the elastic moduli and cross-sectional areas of all rods are the same. The 
calculation of the deflection of a series of trusses with a successively increasing number of panels 
gives the following results 

3 3 3 2
2

3 3 3 2
3

3 3 3 2
4

3 3 3 2
5

3 3 3 2
6

(14 3 90 ) / (27 ),

(63 11 270 ) / (81 ),

(84 13 270 ) / (81 ),

5 (7 18 ) / (27 ),

(126 17 270 ) / (81 ),...

P a c h h

P a c h h

P a c h h

P a

EF

EF

EF

EF

h EF

c h h

P a c h

   

   

   

   

   

 (10) 

In the general case, the deflection formula has the form: 
   3 3 3 2

1 2 3
/  .

n
P C a C c C h h EF   (11) 

The coefficients in this expression are functions of the number of panels n. The common 
members of the sequences they form can be found using the special operators rsolve and rgf_findrecur 
from the Maple system. Equally effective in finding common members of sequences are the operators 
of the Mathematica computer mathematics system. The common terms of the sequences of 
coefficients at 2, 3,..., 7n   give the following result 

1 2 3
7 / 27, (2 5) / 81, 10 / 3.C n C n C     (12) 

Although the construction under consideration is spatial, the solution for it is much more compact 
than even for planar trusses [28]. This can be explained by the peculiarity of the stress state of the 
structure, which does not depend on the number of panels. The same simple solution is obtained in the 
problem of deflection under the action of one vertical force on vertex C. The coefficients in (11) for such 
a load have the form 

1 2 3
/ 27, / 81, 1 / 3.C n C n C    (13) 

Deflection due to the combined action of concentrated and distributed loads can be calculated by 
a linear combination of solution (11) with coefficients (12) and (13). 

Let's build graphs of solution (11), (12) for a distributed load. The total load is fixed 
(6 1)

sum
P P n   and the length of the coating side L na . The dimensionless deflection is denoted as 

' / ( )
n sum
EF P L   . In this formulation, the dimensionless deflection decreases with an increase in 

the number of panels (Fig. 5). The horizontal asymptote of the solution (ultimate deflection) is traced. 
Using the analytical form of the solution and the operators of the Maple system, the lower limit of the 
relative deflection is obtained: lim ' / (9 ).

n
h L


 
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Fig. 5. Dependence of the dimensionless deflection on the number of panels L=50 m; I — 0.5mh  ;   

II — 1.0h  m; III — 1.5h  m 

Solution (11) is easily generalized to the case of different stiffnesses of inclined, vertical, and 
horizontal truss rods. Taking EF  for the stiffness of the chord bars of length a, and /EF с  for the 

stiffness of inclined braces and ribs, /
h

EF   for the stiffness of vertical support posts, a more general 
solution with the same coefficients is obtained: 

3 3 3
1 2 3

2

( )
.c h

n

P C a C c C h

h EF

  
   (14) 

If in the design the rigidity of the belt rods is greater than the rigidity of the other rods, including 
the supporting ones,  то 1, 1.

c h
     

2.4 Top displacement due to wind load 
 Pyramidal structures, having a large windage, are exposed to wind loads. In the case under 
consideration, such a load can be modeled to some extent by a uniform nodal load along one face of 
the pyramid (Fig. 6). Nonzero elements of the right side of the equilibrium equation have the form: 

3 1 1, 1,.., 1, 3 2,.., 4 4, 6 2,..,6 .i i n i n n i n n−Ψ = = + = − − = −  

 
Fig. 6. Wind load y-axis 
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 The dependence of the horizontal displacement nδ  of the peak C in the direction of the wind is 
being sought. From the analysis of expressions for the deflection of trusses with n=5, 6,..  follows the 
general form of the solution, similar to (11 ) ( ) ( )3 3 3 2

1 2 3 ,/n P C a C c C h a EFδ = + +  where the coefficients have 
the form 

3
1

2
2

2
3

(5 57 285) /18,
(37 79 132) / (162 ),
(4 11 22) / .

C n n
C n n n
C n n n

= − +

= − +

= − +  
 A distinctive feature of this solution is that it is valid for n greater than 4. Solutions for n=2 and 
n=3 do not fit into the pattern found. 

2.5 Natural oscillation frequency 
The value of the first (lowest) frequency of natural oscillations is one of the most important 

dynamic characteristics of the structure. For this quantity, methods are known for obtaining their upper 
and lower bounds, free from compiling and solving high-order frequency equations. These methods are 
based on the calculation of partial frequencies, the values of which can be found analytically. For 
regular constructions, it is possible to generalize solutions to an arbitrary number of truss panels by 
induction [7]. 

 The mass of the truss (Fig. 1, 2) is modeled by loads in nodes (hinges). In the simplest 
formulation, the masses of loads m are the same, the oscillations of the nodes are only vertical. The 
number of degrees of freedom of the truss weight system of order n is equal to the number of nodes 

6 1K n  . 
The system of differential equations of cargo dynamics has a matrix form: 

0,
K K

 M Z D Z  (15) 

where Z  is the vector of vertical displacements of masses 1,..., K, 
K

D  is the stiffness matrix, 
K

M  is the 

inertia matrix of size K K  , Z  is the acceleration vector. In the case of identical masses of loads, the 
inertia matrix is proportional to the identity matrix 

K K
mM I . The elements of the compliance matrix 

K
B  , which is the inverse of the stiffness matrix 

K
D , can be found using the Maxwell-Mohr formula: 

( ) ( )
,

1

/ ( ),
s

i j
j

n

i
b S S l EF  



   (16) 

where ( )iS  is the force in the rod   from the action of a single vertical force at node i. Multiplying (15) 

from the left by 
K

B , taking into account the replacement 2Z Z  corresponding to harmonic 
oscillations 

0
sin( )

k k
z u t   , (17) 

the problem  reduce to the problem of eigenvalues of the matrix 
K

B : ,
K

B Z Z  where 21 / ( )m   is 

the eigenvalue of the matrix 
K

B ,   is the eigenfrequency of oscillations. Hence foll,ows 1 / ( )m  . 

The forces ( )iS  in the truss rods included in the elements of the matrix 
K

B  are determined from 
the solution of the system of equations of the truss nodes, which also includes the reactions of the 
supports. 

It is not possible to obtain analytical solutions for a truss with an arbitrary number of panels. 
Consider approximate methods that give estimates of the first frequency from below and from above. 

2.6 Energy method. Top rating  
The Rayleigh formula, which follows from the equality of the maximum values of the kinetic and 

potential energies, has the form: 

max max
T   . (18) 
 The system consists of K identical masses m located at the nodes of the structure. The kinetic 

energy of the system has the form: 
2

1

/ 2.
K

i
i

T mv


   (19) 
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According to (17), the vertical velocity of mass i has the form: 
0

sin( )
i i i

v z u t     . From 

here, taking into account that 
0

max(sin( )) 1t    corresponds to the maximum kinetic energy, it 
follows: 

2 2
max

1

/ 2,
K

i
i

T m u


   (20) 

where the amplitude of the vertical displacement is calculated by the Maxwell-Mohr formula: 
( ) ( ) ( ) ( )

1 1

/ ( ) / ( ) .
s sn n

P i P i
i i

u S S l EF P S S l EF Pu     
  

     

  (21) 

 Designations are introduced: ( )PS  is the force in the rod 1,...,
s

n   from the action of the load 

P distributed over the nodes, ( )iS
  is the force in the same rod from a single (dimensionless) load 

applied to the mass with number i, ( ) ( ) /P PS S P  . The choice of such a load is determined by the 
proximity of the deflection form to the oscillation form cargo systems with the first frequency. Thus, (20) 
takes the form: 

2 2 2
max

1

/ 2,
K

i
i

T P mu


    (22) 

where ( ) ( )

1

/ / ( )
sn

P i
i i

u u P S S l EF  


    

  is the amplitude of mass displacements with the number i 

under the action of a distributed load (Fig. 2), referred to the value P. 
 The potential energy of deformation of the truss rods under the action of a distributed load has 

the form: ( ) ( ) 2
max

1 1

/ 2 ( ) / (2 ).
s sn n

P PS l S l EF   
  

      Due to the linearity of the problem 

( ) ( )

1

N
P i

i

S P S 


   . Hence, 

2 ( ) ( ) 2 ( ) ( ) 2
max

1 1 1 1

/ (2 ) / (2 ) / 2.
s sn nK K N

P i P i
i

i i i

P S S l EF P S S l EF P u     
    

         

  (23) 

 From (11), (18), (22) the upper estimate of the first oscillation frequency of the truss follows (the 
Rayleigh formula): 

2 2

1 1

/ .
K K

R i i
i i

u mu
 

     (24) 

 To obtain the required dependence of the frequency on the number of panels, the displacements  

i
u  must also be obtained as a function of n. The solution plan is as follows: 1) calculation of mass 
displacement with number 1 for different values of n, followed by determination of the common term of 
sequences 

1
( )u n , 2) similar calculation of mass displacements with numbers 2, 3, 4, ... . 3) 

generalization of formulas 
1 2 3
( ), ( ), ( ),...u n u n u n    according to the mass number and obtaining the 

desired dependence ( )
k

u n , 4) calculation of the common terms of the sums 
1

K

i
i

u

   and 2

1

K

i
i

u

  . 

The calculation of the displacement for trusses with different numbers of panels shows that the 

form of the solution 
1

K

i
i

u

   does not depend on n. The numerator and denominator in (24) are 

calculated separately. The numerator has the following form: 
3 3 3 3 2

1

( ) / (324 ),
K

i a c d h
i

u g a g c g d g h h EF


      (25) 

or in a more compact form 
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3 2

1 [ , , , ]

/ (324 )
K

i
i a c d h

u mg h EF



 

  , (26) 

where  
2 23(27 102 17 ), 8(13 1), 1, 54(27 75 56).

ha c d
g n n g n g n g n n           (27) 

The denominator (24 ) has a more complex form: 
2 3 3 4 2 2

1 , [ , , , ]

/ (243 ),
N

k
k a c d h

mu mf h E F
 

 
 

   (28) 

where  
3 2 2

2 3 2

2

3 2

(3468 2033 1782 81) / 96, (7 203 14) / 54,

( 1) / 2592, 3(90 297 507 560),

(180 241 845 ) / 36, (25 3)( 1) / 144,

3(153 177 122 108) / 2, 5( 1) / 2,

( 6)( 1) / 1

aa cc

dd hh

ac ad

ah dh

cd

f n n n f n n

f n f n n n

f n n f n n

f n n n f n

f n n

      

     

     

     

   208, 63 134 83.
hc
f n n  

 (29) 

Thus, the upper estimate of the first frequency of the truss, depending on the number of panels, 
can be obtained by the formula: 

3

[ , , , ]

3 3

, [ , , , ]

3

4
a c d h

R

a c d h

EF g

h
m f





 




 








 (30) 

with coefficients (27), (29) depending only on the construction order n. 
2.7 Dunkerley score  

The lower estimate of the first oscillation frequency is obtained by the Dunkerley formula: 
2 2

1

,
K

D i
i

  



   (31) 

where 
i

  is the oscillation frequency of one mass m  located at node i. To calculate partial frequencies 

i
 , equation (15) is written in the scalar form: 

0,
i i i

mz D z   (32) 

where 
i

z  is the vertical displacement of the mass, 
i

z  is the acceleration vector, 
i

D  is the scalar 

stiffness coefficient (i is the number of the mass). The frequency of vibrations of the load /
i i

D m  . 
The stiffness coefficient, inverse to the compliance coefficient, is determined by the Maxwell-Mohr 
formula, similar to (9): 

 2( )

1

1 / / ( ).
sn

i
i i

D S l EF 





     (33) 

 Here it is denoted ( )iS
 — the forces in the rod with the number   from the action of a single 

vertical force applied to the node i. Arguing in the same way as when calculating the frequencies of a 
system with many degrees of freedom, one can obtain 

 22 2 ( ) 2

1 1 1 1 1

1
/ ( ) / ( ).

snK K K K
i

D i i n
i i i ii

m m m S l EF m h EF
D  



   

    

           (34) 

Let us successively calculate the sums  22 ( )

1 1

snK
i

n
i

h S l 
 

     for n = 2,3,4,5: 
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3 3 3 3

2

3 3 3 3

3

3 3 3 3

4

3 3 3 3

5

561 105 5805 2
,

648
2214 314 26892 9

,
1458

5658 677 71901 24
,

2592
1155 123 14958 5

.
405

a c h d

a c h d

a c h d

a c h d


  



  


  









 





 (35) 

Computing the common terms of the coefficient sequences in these expressions gives: 
3

[ , , , ]

,
n

a c d h

r





    (36) 

where   
2 3 2 2

3 2 2

(73 60 15) / (108 ), (6 23 20 5) / (162 ,

(54 43 30 15) / (6 , ( 1) / 324.

)

)
a c

h d

r n n n r n n n n

r n n n n r n

      

     
 (37) 

When deriving expressions for coefficients (37), the same operators of the Maple system were 
used when obtaining solution (11) for the deflection. The only complication here was that in the 
coefficients (37) not only the numerator but also the denominator changes. Direct application of Maple 
operators to elements of sequences does not allow one to extract common members of sequences. 
Success was achieved only after the denominator change functions (linear and quadratic in n) were 
guessed. 

The result is the lower limit of natural frequency according to Dunkerley: 

3

[ , , , ]

.

a c

D

d h

EF
h

m r










 (38) 

The structure of the Dunkerley estimate (38) coincides with formula (30) obtained by the energy 
method, but formula (38) is much simpler. All coefficients for which the inductive method is required are 
contained only in the denominator (38). 

3 Results and Discussion 

The error of the obtained estimates can be estimated using an example. Let us consider trusses 
with n panels with dimensions h = 4m, a = 0.3 m. The mass of loads in nodes depends on the number 
of panels. The total length of all structure bars is equal to 

       .3 3 4 3 2 1 3 2 1L n h n c n d n          

The mass per one node is calculated by the formula / (6 1)m L F n  , where L F  is the 
mass of all rods, distributed over the nodes. The stiffness of the steel rods of the truss is 

83.2 10 NEF   , the density of steel 37900 kg / m  . The first natural oscillation frequency 
R

  of the 
truss (30), obtained by the Rayleigh energy method, and the Dunkerley estimate (38) approach the 
minimum value of the frequency spectrum with a small number of panels (Fig. 7). 
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 .  

Fig. 7. The first oscillation frequency obtained in three ways depending on the number of panels 

  The numerical value of the natural frequency of a system with 6 1K n   degrees of freedom 
found as the minimum frequency of the full frequency spectrum, is very close to the Rayleigh estimate. 
To refine the estimate of the degree of obtained approximations, it is necessary to introduce the value 
of the relative error 

1 1
| | / ,

D D
    

1 1
| | / .

R R
      (39) 

Depending on the number of panels, the error of the Dunkerley solution varies from 21% to 34% 
for a large number of panels (Fig. 8). It is also noted that the degree of approximation of the Dunkerley 
and Rayleigh estimates is almost independent of the size of the truss. 

With an increase in the number of panels, the errors of analytical estimates increase, but at a 
decreasing rate Rayleigh's estimation error is approximately 7%, and Dunkerley's is 34%. 

Higher vibration frequencies are usually not used in engineering calculations, except, perhaps, for 
studies of resonance cases. The natural oscillation frequency caused by the operation of various 
devices (machine tools, fans, etc.) can coincide with the natural oscillation frequency of the structure. It 
is not possible to calculate these frequencies analytically, but the debugged mathematical apparatus in 
the mode of numerical calculations gives an interesting picture of the sets of spectra of regular 
systems. In figure 8, ten conditional curves connect the points corresponding to the oscillation 
frequencies of trusses of orders n = 2,..,10. Each curve corresponds to a truss of a given order, the 
ordinates of the points on it are the frequencies. The abscissa shows the numbers of natural 
frequencies in the ordered spectra. The spectrum of the simplest truss at n =2 contains 

6 1 13K n    frequencies, the spectrum of a truss of order n = 11 consists of 67 frequencies. 
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Fig. 8. Dunkerley's and Rayleigh estimation error depending on the number of panels 

Some features of the frequency distribution are noticed here. First, all spectra are characterized 
by sharp, very significant frequency jumps. Regardless of the truss order, the first seven frequencies 
range from 10 to 350 Hz. The following frequencies also form a certain group (sound frequencies from 
2000-2300 Hz). Secondly, many multiple frequencies are found in the system. All higher frequencies for 
any truss order are multiples. At the same time, regularity can be traced in frequency multiplicity. With 

2n  , the multiplicity of the highest frequency is six (the upper horizontal step on figure 9), with 3n   
already nine frequencies coinciding, with n = 4 there are twelve such frequencies.  

 
Fig. 9. Frequency spectrum, h = 0.3 m 

Continuing further, it can be found that the multiplicity of the highest frequency of the truss of 
order n is generally equal to 3n. The same pattern is observed with multiple frequencies in the middle 
of the spectra. For n = 3, three frequencies are multiples, for  4n   there are already six of them, and 
so on. In this group, the general formula for the number of multiple frequencies is different: 3( 1)n  . 
However, there is no exact frequency match here. The frequencies in these groups coincide with very 
high accuracy and are conditionally called multiples. 

In addition, the observed regularity is not universal but is characteristic only for certain values of 
the truss size. The frequency distribution pattern in the spectra of a group of regular trusses is 
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especially strongly influenced by the size ratio /a h . The frequency distribution in the spectra of ten of 
the same trusses, at h = 2.0 m, is shown in figure 10. Here, several groups of multiple frequencies can 
also be distinguished, with the same regularity for their numbers, as in the previous example. 

 
Fig. 10. Frequency spectrum, h=2.0 m 

Characteristic repeating groups of three higher frequencies appear on the graphs (except for the 
case of n = 2), however, in general, the frequency pattern looks almost chaotic. However, one can 
notice another important feature of the frequency distribution in the spectra. Let us introduce the 
concept of frequency index — the frequency number in the ordered frequency spectrum of a truss of 
order n, starting from its end. The frequency index in the spectrum will be denoted by a number in curly 
brackets. 

 Thus, there is a relationship between the usual frequency number i, the index {j} and the number 
of degrees of freedom K: 

1 { }
.

i K j
     In particular, the first frequency is the frequency with the index 

{K}. In the considered truss 6 1.K n   
In figure 11, according to the data in figure 10, isolines are plotted — lines connecting 

frequencies with the same index for trusses of different orders n [29]. The curve with the index {1} 
passes through the points of higher frequencies of the trusses of order n =2,3,.. 11. The curve {13} 
consists of the points of the index {13}. For a truss of order n = 2, this is the lowest frequency or the 
frequency with the highest index in the spectrum. The isolines are ordered into families of curves 
smoothly converging to some constant frequency, independent of the construction order. Knowing the 
patterns of frequency distribution in the spectra and their limiting values makes it possible to predict the 
values of higher frequencies without laborious calculations, which are typical for systems with a large 
number of degrees of freedom. In this problem, the region of high-frequency concentration is very 
narrow and is located in the range from 950 to 11050s , regardless of the order of the truss. 
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Fig. 11. Isolines of the frequency spectra, h = 2.0 m 

Revealing regularities in the distribution of frequencies in the spectra of regular systems is 
caused not only by theoretical interest. For practical engineers who design structures that are not 
subject to possible resonance at higher frequencies, it is important to know in which areas the "clumps" 
of frequencies are located to take the designed structure out of the dangerous area. 

A scheme of a statically determinate spatial coverage truss is proposed. The truss has the shape 
of a regular trihedral pyramid with two rows of vertical supports - racks along the contour of the lower 
edge. This design can be used in covering public buildings and structures, such as circuses, arenas, 
station buildings, and airports.  

The truss is externally statically indeterminate. Support reactions can be found only by solving a 
joint system of equilibrium equations for all nodes simultaneously with the forces in the rods. However, 
there is a more difficult task here. It is necessary to find the analytical dependence of the deflection of 
the top of the dome and the first natural frequency on the dimensions of the truss and the number of 
panels. If the model of a truss or construction with a given number of panels is easy to calculate 
numerically and even analytically [30]–[32], then for a truss with an indefinite (arbitrary) number of 
panels, calculation formulas can only be derived by induction on the solutions of several trusses with a 
successively increasing number of panels. This was done for the considered truss. The formula for 
deflection as a function of the number of panels turned out to be very simple, due to the property of the 
truss itself. The calculation showed that the pattern of force distribution over the structure rods does not 
depend on the number of panels. For example, the number of rods in some belts changes, but the 
forces in them, as well as the reactions of the supports, remain the same. 

If it is quite simple to solve the problem of deflection in symbolic form, then in the general case 
the problem of frequencies of natural vibrations always reduces to solving the frequency equation — an 
algebraic equation of order proportional to the number of degrees of freedom. In this problem, the 
number of degrees of freedom is equal to the number of nodes in which the masses are located, 
simulating the inertial properties of the structure. It is impossible to obtain an analytical solution to the 
problem of natural frequencies not only for an arbitrary number of panels but also for a truss with two 
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panels on the sides. For n = 2, the system already has 13 degrees of freedom. However, sufficiently 
accurate lower and upper estimates of the first (lowest) natural frequency can be found using the 
Dunkerley and Rayleigh formulas. Comparison with the numerical solution of the complete problem of 
the oscillation of a mass system with many degrees of freedom confirmed the well – known fact that the 
Rayleigh formula for the upper estimate gives much greater accuracy than the Dunkerley method for 
the lower estimate of the first frequency. The pattern of frequency distribution in the spectra of regular 
trusses is also shown. The numerical methods of the Maple system were used to calculate the 
frequencies. An interesting distribution pattern of multiple frequencies and the presence of ordered 
frequency isolines in the spectra of a family of regular structures have been discovered. 

4  Conclusions 

The main purpose of the work is to develop a project for a spatial regular dome-type structure in 
the form of a trihedral pyramid. Some requirements were put forward for the design. Firstly, the dome 
should not rest on central supports, and secondly, the shape of the structure should be regular, which 
allows the use of inductive methods to derive calculation formulas, taking into account an arbitrary 
number of panels. In addition, the design must have an architecturally attractive appearance. All these 
requirements have been met. 

Formulas are derived both for deflections and the boundaries of the first frequency. The formulas 
are practical. They can be used with a very large number of panels, that is, precisely in those cases 
where the accumulation of calculation errors in numerical form is most likely.  

Previously unknown ordered isolines were found in the spectrum of natural frequencies, revealing 
the region of higher frequency concentration on the plane of the spectra of a series of regular trusses. 
For the first time, the concept of the natural frequency index in the spectrum is introduced. The closed 
analytical form of the obtained solutions makes it possible to use all the means of mathematical 
analysis to identify their features and search for combinations of design parameters that are optimal in 
terms of strength, rigidity or stability. 

5 Acknowledgements 

This work was financially supported by the Russian Science Foundation 22-21-00473. 
 
References 

1.  Hutchinson, R.G., Fleck, N.A. Microarchitectured cellular solids - The hunt for statically 
determinate periodic trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 
2005. 85(9). Pp. 607–617. DOI:10.1002/zamm.200410208. 

2.  Hutchinson, R.G., Fleck, N.A. The structural performance of the periodic truss. Journal of the 
Mechanics and Physics of Solids. 2006. 54(4). Pp. 756–782. DOI:10.1016/j.jmps.2005.10.008. 

3.  Zotos, K. Performance comparison of Maple and Mathematica. Applied Mathematics and 
Computation. 2007. 188(2). Pp. 1426–1429. DOI:10.1016/j.amc.2006.11.008. 

4.  Feng, J., Sun, Y., Xu, Y., Wang, F., Zhang, Q., Cai, J. Robustness analysis and important 
element evaluation method of truss structures. Buildings. 2021. 11(10). 
DOI:10.3390/BUILDINGS11100436. 

5.  Spyridis, P., Strauss, A. Robustness Assessment of Redundant Structural Systems Based on 
Design Provisions and Probabilistic Damage Analyses. Buildings 2020, Vol. 10, Page 213. 2020. 
10(12). Pp. 213. DOI:10.3390/BUILDINGS10120213. URL: https://www.mdpi.com/2075-
5309/10/12/213/htm (date of application: 5.02.2022). 

6.  Petrenko, V.F. The natural frequency of a two-span truss. AlfaBuild. 2021. (20). Pp. 2001. 
DOI:10.34910/ALF.20.1. 

7.  Vorobev, O.V. Bilateral Analytical Estimation of the First Frequency of a Plane Truss. 
Construction of Unique Buildings and Structures. 2020. 92(7). Pp. 9204–9204. 
DOI:10.18720/CUBS.92.4. URL: https://unistroy.spbstu.ru/article/2020.92.4 (date of application: 
27.02.2021). 

8.  Kirsanov, M., Safronov, V. Analytical estimation of the first natural frequency and analysis of a 
planar regular truss oscillation spectrum. Magazine of Civil Engineering. 2022. 111(3). 
DOI:10.34910/MCE.111.14. 

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


This publication is licensed under a CC BY-NC 4.0 
 

 

Kirsanov, M. 
Trihedral Rod Pyramid: Deformations and Natural Vibration Frequencies; 
2022; Construction of Unique Buildings and Structures; 104 Article No 10401. doi: 10.4123/CUBS.104.1 

9.  Sviridenko, O. V, Komerzan, E. V. The dependence of the natural oscillation frequency of the 
console truss on the number of panels. Construction of Unique Buildings and Structures. 2022. 
101. Pp. 10101. DOI:10.4123/CUBS.101.1. 

10.  Degertekin, S.O., Yalcin Bayar, G., Lamberti, L. Parameter free Jaya algorithm for truss sizing-
layout optimization under natural frequency constraints. Computers & Structures. 2021. 245. Pp. 
106461. DOI:10.1016/J.COMPSTRUC.2020.106461. 

11.  Kaveh, A., Hosseini, S.M., Zaerreza, A. Size, Layout, and Topology Optimization of Skeletal 
Structures Using Plasma Generation Optimization. Iranian Journal of Science and Technology, 
Transactions of Civil Engineering 2020 45:2. 2020. 45(2). Pp. 513–543. DOI:10.1007/S40996-
020-00527-1. URL: https://link.springer.com/article/10.1007/s40996-020-00527-1 (date of 
application: 4.03.2022). 

12.  Kaveh, A. Optimal analysis of structures by concepts of symmetry and regularity. Optimal 
Analysis of Structures by Concepts of Symmetry and Regularity. 2013. 9783709115. Pp. 1–463. 
DOI:10.1007/978-3-7091-1565-7. 

13.  Lemonge, A.C.C., Carvalho, J.P.G., Hallak, P.H., Vargas, D.E.C. Multi-objective truss structural 
optimization considering natural frequencies of vibration and global stability. Expert Systems with 
Applications. 2021. 165. Pp. 113777. DOI:10.1016/J.ESWA.2020.113777. 

14.  Rakhmatulina, A.R., Smirnova, A.A. The dependence of the deflection of the arched truss loaded 
on the upper belt, on the number of panels. Science Almanace. 2017. 28(2–3). Pp. 268–271. 
DOI:10.17117/na.2017.02.03.268. URL: http://ucom.ru/doc/na.2017.02.03.268.pdf (date of 
application: 9.05.2021). 

15.  Kazmiruk, I.Y. On the arch truss deformation under the action of lateral load. Science Almanac. 
2016. 17(3–3). Pp. 75–78. DOI:10.17117/na.2016.03.03.075. URL: 
http://ucom.ru/doc/na.2016.03.03.075.pdf (date of application: 9.05.2021). 

16.  Kirsanov, M., Maslov, A. Estimation of the Natural Vibration Frequency of a Triangular Mast. 
AlfaBuild. 2021. 17(1704). DOI:10.34910/ALF.17.4. 

17.  Chen, J., Zhang, W., Zhang, Y.F. Equivalent continuum model and nonlinear breathing 
vibrations of rotating circular truss antenna subjected to thermal excitation. Thin-Walled 
Structures. 2020. 157. Pp. 107127. DOI:10.1016/J.TWS.2020.107127. 

18.  Santana, M.V.B., Gonçalves, P.B., Silveira, R.A.M. Closed-form solutions for the symmetric 
nonlinear free oscillations of pyramidal trusses. Physica D: Nonlinear Phenomena. 2021. 417. 
Pp. 132814. DOI:10.1016/J.PHYSD.2020.132814. 

19.  Li, S., Jiang, W., Zhu, X., Xie, X. Effect of localized defects on mechanical and creep properties 
for pyramidal lattice truss panel structure by analytical, experimental and finite element methods. 
Thin-Walled Structures. 2022. 170. Pp. 108531. DOI:10.1016/J.TWS.2021.108531. 

20.  Queheillalt, D.T., Wadley, H.N.G. Pyramidal lattice truss structures with hollow trusses. Materials 
Science and Engineering A. 2005. 397(1–2). Pp. 132–137. DOI:10.1016/J.MSEA.2005.02.048. 

21.  Wang, Y.Z., Ma, L. Sound insulation performance of membrane-type metamaterials combined 
with pyramidal truss core sandwich structure. Composite Structures. 2021. 260. Pp. 113257. 
DOI:10.1016/J.COMPSTRUCT.2020.113257. 

22.  Zhang, G., Wang, B., Ma, L., Xiong, J., Wu, L. Response of sandwich structures with pyramidal 
truss cores under the compression and impact loading. Composite Structures. 2013. 100. Pp. 
451–463. DOI:10.1016/J.COMPSTRUCT.2013.01.012. 

23.  Ufimtsev, E., Voronina, M. Research of Total Mechanical Energy of Steel Roof Truss during 
Structurally Nonlinear Oscillations. Procedia Engineering. 2016. 150. Pp. 1891–1897. 
DOI:10.1016/J.PROENG.2016.07.188. 

24.  Kirsanov, M.N. Deformations And Spatial Structure Vibrations Frequency of The Rectangular 
Contour Type Cover: Analytical Solutions. Construction of Unique Buildings and Structures. 
2021. 98(5). Pp. 9805. DOI:10.4123/CUBS.98.5. 

25.  Bekdaş, G., Yucel, M., Nigdeli, S.M. Evaluation of metaheuristic-based methods for optimization 
of truss structures via various algorithms and lèvy flight modification. Buildings. 2021. 11(2). Pp. 
1–25. DOI:10.3390/BUILDINGS11020049. 

26.  Bekdaş, G., Nigdeli, S.M., Yang, X.S. Sizing optimization of truss structures using flower 
pollination algorithm. Applied Soft Computing. 2015. 37. Pp. 322–331. 
DOI:10.1016/J.ASOC.2015.08.037. 

27.  Buka-Vaivade, K., Kirsanov, M.N., Serdjuks, D.O. Calculation of deformations of a cantilever-
frame planar truss model with an arbitrary number of panels. Vestnik MGSU. 2020. (4). Pp. 510–

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


This publication is licensed under a CC BY-NC 4.0 
 

 

Kirsanov, M. 
Trihedral Rod Pyramid: Deformations and Natural Vibration Frequencies; 
2022; Construction of Unique Buildings and Structures; 104 Article No 10401. doi: 10.4123/CUBS.104.1 

517. DOI:10.22227/1997-0935.2020.4.510-517. 
28.  Kirsanov, M. Trussed Frames and Arches: Schemes and Formulas. Cambridge Scholars 

Publishing Lady Stephenson Library. Newcastle upon Tyne, GB, 2020. 
29.  Kirsanov, M., Vorobyev, O. Calculating of a spatial cantilever truss natural vibration frequency 

with an arbitrary number of panels: analytical solution. Construction of Unique Buildings and 
Structures. 2021. 94. Pp. 9402. DOI:10.4123/CUBS.94.2. 

30.  Goloskokov, D.P., Matrosov, A. V. Comparison of two analytical approaches to the analysis of 
grillages. 2015 International Conference on “Stability and Control Processes” in Memory of V.I. 
Zubov, SCP 2015 - Proceedings. 2015. Pp. 382–385. DOI:10.1109/SCP.2015.7342169. 

31.  Goloskokov, D.P., Matrosov, A. V. Approximate analytical solutions in the analysis of thin elastic 
plates. AIP Conference Proceedings. 2018. 1959. DOI:10.1063/1.5034687. 

32.  Goloskokov, D.P., Matrosov, A. V. Approximate analytical approach in analyzing an orthotropic 
rectangular plate with a crack. Materials Physics and Mechanics. 2018. 36(1). Pp. 137–141. 
DOI:10.18720/MPM.3612018_15. 

 
 
 
 

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	1 Introduction
	2 Materials and Methods
	2.1 Truss scheme
	2.2 Calculation of forces in elements
	2.3 Deflection
	2.4 Top displacement due to wind load
	2.5 Natural oscillation frequency
	2.6 Energy method. Top rating
	2.7 Dunkerley score

	3 Results and Discussion
	4  Conclusions
	5 Acknowledgements
	References

