
This publication is licensed under a CC BY-NC 4.0 
 

 

Kirsanov, M. 
Formulas for calculating the deflection and displacement of a planar truss support with short studs in a lattice; 
2022; Construction of Unique Buildings and Structures; 104 Article No 10403. doi: 10.4123/CUBS.104.03 

 

 
Research Article ISSN 2304-6295 
Received: September 22, 2022 Accepted: November 25, 2022 Published: December 06, 2022 

Formulas for calculating the deflection and displacement of a planar 
truss support with short studs in a lattice 

 

Kirsanov, Mikhail Nikolaevich1  
1 Moscow Power Engineering Institute, Moscow, Russian Federation; c216@mail.ru;  
Correspondence:* email c216@ya.ru; contact phone +79651833534 

Keywords: 
Planar truss;  Maple; Analytical solution; Deflection; Induction; Short studs;  Asymptotics 
Abstract: 
The object of research is a planar statically determinate regular diagonal truss with shortened 

racks in the lattice. The task is to investigate the structure for kinematic invariability and derive a 
formula for the dependence of the deflection on the number of panels. Method. The forces in the truss 
are determined in symbolic form by the method of cutting nodes in the Maple computer mathematics 
system. The deflection and displacement of the movable support are calculated using the Maxwell-
Mohr formula. The generalization of a series of solutions for trusses with a different number of panels is 
carried out by induction. For sequences of coefficients in the desired formula, recursive equations are 
compiled and solved. Results. It is shown that for a certain number of panels, the determinant of the 
matrix of the system of linear equations for the equilibrium of nodes degenerates, which corresponds to 
the kinematic variability. A corresponding picture of the distribution of the virtual velocities of nodes is 
constructed. For admissible values of the number of panels, formulas for the deflection and 
displacement of a truss movable support with an arbitrary number of panels are obtained. 

1 Introduction 

The calculation of deformations of building structures is usually carried out by the finite element 
method in numerical form  [1]–[3]. Analytical methods are used much less often in engineering 
calculations. For regular trusses with periodically repeating structures in the lattice, in [4]–[7], together 
with operators of computer mathematics systems, the method of induction is used, which makes it 
possible to derive calculation formulas for an arbitrary order of structure regularity. Problems of regular 
statically determinate rod systems were dealt with by Hutchinson, R.G. and Fleck, N.A.   [8], [9]. Matrix 
methods and graph theory in the calculations of regular planar and spatial trusses in relation to their 
optimization were applied by  Kaveh A. [10]–[12]. In the papers [13]–[18], by induction in the Maple 
system, solutions were obtained for the problems of deflection of various planar  trusses with an 
arbitrary number of panels. An analytical estimate of the first natural frequency of oscillations of planar 
and spatial trusses was found in [19]–[21]. A two-sided estimate of the first frequency of a regular truss 
in an analytical form using the Maple system was obtained in [22]. The article [23] proposes a two-node 
method for predicting the effective elastic properties of a periodic cellular truss. The continuum 
representation for calculating a regular truss is used in [24]. In [25], in the problem of periodic truss 
networks based on the concepts of the quasi-continuum method, the decomposition of a regular truss 
lattice into simple Bravais lattices is used. To reduce computational costs while accurately taking into 
account the dominant deformation mechanisms, a homogenized continuum description of lattice 
trusses is introduced in [26], based on the application of the Cauchy–Born multilattice rule to a 
representative unit cell. The author's handbooks [27], [28] contain schemes of planar static determinate 
trusses and formulas for calculating their deflections and forces in characteristic rods. Analytical 
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methods for calculating a regular truss in relation to the problem of optimization taking into account 
creep were also used in [29]. 

 
 

2 Materials and Methods 

The truss consists of two shortened side panels and n panels in its middle part (Fig. 1). In 
addition to nodes in the upper and lower chords, the truss has nodes in the middle part, to which racks 
of height h are attached. The braces of the lattice are connected to the hinges of the truss belts and to 
the upper nodes of the racks. Thus, the rods of the upper chord, compressed under the action of a 
vertical load and allowing buckling, have a shorter length than the tension rods of the lower chord. This 
increases the local stability of the structure. The truss contains 8 19K n   rods. The total length of 
all rods 4( 1) 10( 1) ( 7)n a n c n h     , where 2 2c a h= + . 

 
Fig. 1. Truss, n=6. The uniform load on the lower chord.  

Calculation of forces in the bars of a statically determinate truss is performed by the method of 
cutting nodes. Information about the truss scheme and coordinates of hinges and supports is entered 
into the program [30] parametrically for an arbitrary number of panels. Truss nodes are numbered, the 
origin is placed in the left support (Fig. 2).  

 
Fig. 2. Truss node numbering,  n=2. 

 The coordinates of the nodes in the Maple system are given in cycles, the length of which is 
determined by the parameter n: 

> x[1]:=0:y[1]:=0:x[n+3]:=2*(n+1)*a:y[n+3]:=0: 

> for i to n+1 do x[i+1]:=2*a*i-a; y[i+1]:=0; end:#bottom 

> for i to n+3 do x[i+3+n]:=x[i]; y[i+3+n]:=h;end:#midle 

> x[2*n+7]:=0:y[2*n+7]:=2*h:        #left 

> x[4*n+11]:=x[n+3]:y[4*n+11]:=2*h: #right 

> for i to 2*n+3 do x[i+2*n+7]:=a*(i-1); y[i+2*n+7]:=3*h;end:#top 

The structure of the lattice is determined by special lists N[i], i=1,.., K+3 of the ends of the 
bars, including three bars modeling supports. For the bars of the lower chord and racks, these lists look 
like: 

> for i to n+2 do N[i]:=[i,i+1]; end: 

> for i to n+3 do N[i+n+2]:=[i,i+n+3]; end: 

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


This publication is licensed under a CC BY-NC 4.0 
 

 

Kirsanov, M. 
Formulas for calculating the deflection and displacement of a planar truss support with short studs in a lattice; 
2022; Construction of Unique Buildings and Structures; 104 Article No 10403. doi: 10.4123/CUBS.104.03 

The calculation of forces in a number of trusses with a different number of panels revealed a 
feature of the proposed lattice scheme. It turns out that for some values n=1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 
15,... the determinant of the matrix of the system of equations vanishes. The picture of the distribution 
of possible node velocities, confirming this feature, was obtained by kinematics methods (Fig. 3). For 
n=1 nodes 1-5, 8, 10, 12, 14 remain motionless. The ratio of velocities is obvious: / /v a u h= . Some of 
the rods make an instant rotational movement, some — a planar one. Rods 9-6 and 7-15 acquire 
instantaneous translational motion. A similar picture of the distribution of possible node velocities can 
be obtained for other invalid truss orders. To eliminate these orders, we consider a sequence of trusses 
with (1 ( 1) 6 ) / 2, 1, 2,...kn k k= − − + = . 

 
Fig. 3. Virtual velocities of variable truss nodes with n=1 

3 Results and Discussion 

3.1 Calculation of forces 
The system of equilibrium equations for nodes is written in matrix form =GS B . The even 

elements of the vector on the right side are filled with vertical loads on the nodes, and the odd elements 
are horizontal. The solution to the system of equations is found in the Maple system by the inverse 
matrix method 1−=S G B . The distribution of forces in the rods under the action of a load on the truss 
along the lower chord is shown in Figure 4. The values of the forces at P=1 are rounded to two 
significant figures. Compressed rods are highlighted in blue, stretched rods are highlighted in red. 
Unstressed bars are indicated by thin black lines. The thickness of the segments of the rods is 
conditionally proportional to the modules of the corresponding forces. It is characteristic that the most 
compressed rods of the upper chord are not located in the middle of the span. 

 
Fig. 4. Distribution of forces from the load on the lower belt,   3 , 2a m h m= =   

A similar picture of the distribution of forces in the rods in the case of a uniform nodal load on the 
upper chord is shown in Figure 5. Here, the most stretched bars of the lower chord are also not in the 
middle of the span, as expected. The rods of the upper belt along the edges of the truss are stretched. 
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Fig. 5. Distribution of forces from the action of the load along the upper chord,   3 , 2a m h m= =  

 
For forces in the rods, the most critical to loss of stability or strength, analytical dependencies on 

the number of panels were obtained by induction. 
From the calculations of a number of trusses in the symbolic form for force 1O  in the rod of the 

middle of the upper belt (Fig. 1), the sequence of values was obtained: 

               5 / (2 ), 9 / (2 ), 21 / (2 ), 29 / (2 ), 49 / (2 ),... .Pa h Pa h Pa h Pa h Pa h− − − − −   

The rgf_findrecur operator of the Maple system for members of this sequence gives a linear 
homogeneous recurrent equation of the fifth order 

1, 1, 1 1, 2 1, 3 1, 4 1, 52 2 .k k k k k kO O O O O O− − − − −= + − − +  

The solution of the recurrent equation obtained using the rsolve operator is: 
2

1 (6 2(3 ( 1) ) ( 1) 5) / (8 ).k kO Pa k k h= − + − − − − +  

Similarly, formulas for other forces are found: 

  

2
2

2
1

2
2

(6 2(3 ( 1) ) ( 1) 3) / (8 ),
(6 2(3 ( 1) ) 15 ( 1) ) / (8 ),
(6 2(3 ( 1) ) 1 ( 1) ) / (8 ).

k k

k k

k k

O Pa k k h
U Pa k k h
U Pa k k h

= − + − − − − −
= + − − − − −
= + − − + − −  

 The presence in these solutions of coefficients depending on the parity of k makes the 
dependences nonmonotonic as k changes. The height value h is in the denominators of the found 
functions, which indicates an increase in the forces in the rods of the upper and lower chords with a 
decrease in the height of the truss. 

3.2 Structural deformations 
To calculate the deflection, assuming that all elements of the truss experience only tension and 

compression, the Maxwell-Mohr formula is used in the form 
( ) (1)

1
/ ( ).

K
PS S l EFα α α

α=

∆ =∑  
(1) 

Суммирование ведется по всем деформируемым стержням конструкции. Здесь 
обозначено: EF - жесткость стержней (одинаковая для всех стержней фермы), lα  — the length of 
the rod, (1)Sα  — the force in the rod number α  from the action of a single vertical force applied to the 

point C, ( )PSα  — усилие в этом же стержне от действия внешней нагрузки. В сумму не входят три 
жестких стержня, моделирующие левую подвижную и правую неподвижную опоры.  

Расчет прогиба от действия нагрузки, равномерно распределенной по узлам нижнего пояса 
показывает, что формула для прогиба имеет следующий вид: 

 
Summation is carried out for all deformable rods of the structure. Here it is indicated: EF — the 

stiffness of the rods (the same for all truss rods),  lα  — the length of the rod, (1)Sα  — the force in the rod 
number from the action of a single vertical force applied to the point C, ( )PSα  — the force in the same 
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rod from the action of an external load. The sum does not include three rigid rods modeling the left 
movable and right fixed supports.  

The calculation of deflection from the action of a load evenly distributed over the nodes of the 
lower belt shows that the formula for deflection has the following form: 

3 3 3 2
1 2 3( ) / ( ), 1, 2,...k C a C c C h h EF k∆ = + + =                                       (2) 

For k=1,..,18, the following expressions are obtained: 
3 3 3 2

1
3 3 3 2

2
3 3 3 2

3
3 3 3 2

4

3 3 3 2
18

(13 9 ) / (2 ),
(121 27 5 ) / (2 ),
(637 9 ) / (2 ),
(133 63 7 ) / (2 ),...

...
(423433 651 21 ) / (2 ).

a c h h EF
a c h h EF
a c h h EF
a c h h EF

a c h h EF

∆ = − −

∆ = + +

∆ = − +

∆ = + +

∆ = + +

  
(3) 

Operators of the mathematical system of symbolic mathematics are used to find common terms 
of sequences of coefficients. In the Maple system for the sequence 13, 121, 637, 133, ..., 423433 
coefficients 1,kC  using the rgf_findrecur operator from the genfunc package, a homogeneous linear 
recurrence equation of the ninth order can be obtained: 

1, 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 9  4 4 6 6 4 4 .k k k k k k k k k kC C C C C C C C C C− − − − − − − − −= + − − + + − − +  

The solution of this equation gives the dependence of the coefficient at 3a  on k in the form of a 
fourth-order polynomial with coefficients having a sign depending on the parity of the number k: 

4 3 2
1 (30 20(3 ( 1) ) 6(7 5( 1) ) 4(11( 1) 3) 27( 1) 19) /16.k k k kC k k k k= + − − + − − + − + + − −         (4) 

Here, to find the common term (4), it was necessary to obtain a sequence of solutions of length 
18. With a shorter sequence length, the Maple system does not find a solution. It should be noted that 
the solution time of the system of linear equilibrium equations of large-order nodes in symbolic form is 
much longer than in numerical form. With increasing k, the calculation time of each subsequent truss 
increases noticeably. This is especially evident in the company under consideration, for which the 
sequence of allowable numbers n is sparse: n=4, 6,10,12,16,18, 22, 24, 28, 30, 34, 36, 40, 42, 46, 48, 
52, 54... . At these values, the determinant does not vanish. 
 Similarly, but somewhat simpler, other coefficients in (2) are obtained: 

2
2

3

3(2 (10( 1) 2) 5( 1) 1) / 8,
(5( 1) 2 1) / 4.

k k

k

C k k
C k

= + − + + − −

= − + +
 

3.3 Calculation of the support shift 
The left movable hinge support under the action of a vertical load receives some displacement. It 

can be calculated using the Maxwell-Mohr formula (1), where (1)Sα  is the force from the action of a 
single horizontal force on this support. The result of the calculation for a different number of panels has 
the form: 

2 )./ (k kPa D hEFδ =  
The sequence of coefficients kD  obtained from solving a number of trusses with the number of 

panels n=4, 6.10,..., 54 has the form: 8, 32, 136, 232, 528, 744, 1328, 1712, 2680, 3280, 4728, 5592, 
7616, 8792. For this sequence, the rgf_findrecur operator returns the recurrent equation: 

1 2 3 4 5 6 7  3 3 3 3 .k k k k k k k kD D D D D D D D− − − − − − −= + − − + + −  

The solution of the equation gives the desired dependence 

 2 3 2(6 3(3 ( 1) ) (3( .1) 1) 2( 1) 2 / )) (2k k k
k Pa k k k hEFδ = + − − −− + + − −  

(5) 
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As in solution (2) with coefficients (3), (4), the result is affected by the parity of the number k 
characterizing the number of panels. 

3.4 Numerical example 
 The obtained dependence of the deflection on the number of panels under the action of a nodal 
load on the lower belt on the truss is graphically displayed in Figure 6. The designation of 
dimensionless relative deflection / ( )sEF P L∆ = ∆  is introduced, where sP Pn=  is the total vertical load 
on the structure, 2( 1) 150mL n a= + =  is the length of the truss span. The change in the deflection in 
the accepted formulation with an increase in the number of panels is non-monotonic. The jumps in the 
magnitude of the relative deflection are significant at the beginning of the curve gradually decrease. 

 
Fig. 6. The dependence of the relative deflection on the action of the load on the bottom chord on 
the number of panels  

The same curves for the magnitude / ( )sEF P Lδ = δ  of the relative horizontal shift of the support 
at 150mL =  are shown in Figure 7. All curves have an implicitly expressed maximum, depending on 
the height of the truss, and horizontal asymptotes, the values of which are given by the limit operator of 
the Maple system: lim / (36 ).

k
L h

→∞
δ =  
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Fig. 7. The dependence of the shift of the movable support on the number of panels under the 
action of a distributed load on the lower belt 

The increase in deflection and displacement of the support with a decrease in the height of the 
truss is quite predictable. Firstly, this also follows from the analytical solution, in which the height of the 
structure is in the denominator, and secondly, this corresponds to the physical representation of the 
work of the beam structure under the action of vertical forces. Thin beams bend more, and the 
displacement of the movable support is greater. 

The curves in Figures 6 and 7 are not completely monotonic and contain local extrema. This is 
due to the presence of a complex lattice in the design of the truss. In simple triangular beam trusses, 
these curves are monotonic [7]. 

4 Conclusions 

The main results of the work are as follows. 
1. A mathematical model of deformations of a new scheme of a planar statically determinate truss 

is constructed.  
2. The distribution of forces over the structure rods is shown, which reveals the most loaded rods. 
3. Cases of kinematic shape variability with a certain number of panels have been identified. A 

corresponding picture of the distribution of possible node speeds is constructed, confirming this case. 
4. Formulas of dependences of deflection, displacement of the support and forces in the rods on 

the number of panels are derived. 
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