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Abstract. The inertial properties of a planar model of a hinged supported frame-type truss are modeled by point masses 

at the nodes. Each mass has two degrees of freedom. The stiffness matrix of a statically determinate structure is 

determined by the Maxwell-Mohr formula. To find the forces in the truss rods in an analytical form, the method of 

cutting nodes is used, which is implemented in the Maple computer mathematics system. The lower bound of the first 

natural frequency is sought by the Dunkerley method. Individual solutions for trusses with a sequentially increasing 

number of panels are generalized to an arbitrary case using the double induction method according to the number of 

panels in the girder and the number of panels in the supporting side parts of the truss. The analytical dependence is 

compared with the numerical solution of the problem on the spectrum of natural frequencies of the structure. It is shown 

that with an increase in the number of panels, both in the girder and in the side racks, the accuracy of the analytical 

assessment increases. 

INTRODUCTION 

Calculation of natural vibration frequencies is one of the main tasks of structural dynamics. The first, lowest 

frequency is of particular importance for practice. As a rule, the entire spectrum of vibration frequencies of the 

structure is considered to find it. In general, this problem is solved numerically [1–7]. A simple analytical lower 

bound for the first frequency can be obtained using the Dunkerley method  [8,9]. In this approach, the problem of 

the eigenvalues of the compliance matrix is replaced by a simple calculation of its trace. This approach is especially 

effective in tasks where the lowest frequency is noticeably lower than all others. The Dunkerley method is 

convenient because, unlike Rayleigh's method [10–12], it does not require predicting the vibration mode. Rayleigh's 

method [13] gives an upper estimate for the first natural frequency. With a successful choice of the vibration mode 

for the first mode, the accuracy of the Rayleigh method is significantly higher than the Dunkerley method, but its 

implementation is more complicated. 

For regular structures with symmetry and periodicity, the Dunkerley method, in combination with the 

induction method, cannot only give an analytical solution for the first frequency but also find the 

dependence of the solution on the order of regularity. In regular trusses, this order is equal to the number 

of panels. The general problems of regular statically determinate trusses were studied in [14–16]. There 

are some analytical solutions [17–23] for the deflection of planar regular trusses in the Maple system [24]. 

Handbook [25] contains analytical dependences of the deflection of various regular statically determinate 

planar schemes of trusses, arches, consoles, and frames on the number of panels for some types of loads, 

including schemes that allow kinematic variability for some numbers of panels. An analytical calculation 

of the frequencies of natural oscillations of planar trusses is contained in [26–28]. 

  



METHODS 

Scheme of the truss 

Consider a planar symmetric truss containing 2n panels in the crossbar and m panels in each of the supporting 

side parts (figure 1). The entire mass of the truss is conventionally concentrated in 0 4 4 1N n m    nodes of the 

structure, except for two support nodes. The mass of each node is  . The truss contains 8 8 2n m    rods. This 

number also includes three rods that model the left movable support and the fixed right one. We will take into 

account both vertical and horizontal movements of nodes. Thus, this task is on the oscillation of the system with 

02N N  degrees of freedom. In most known analytical solutions for such constructions [27], horizontal mass 

movements are neglected, and only vertical vibrations are considered. 

 

 

FIGURE 1. Truss, n=4, m=3. 

 

Determination of the forces in the rods 

The matrix NB  (the index indicates the number of degrees of freedom) of the pliability of the structure, which is 

included in the solution of the problem of the natural frequencies of the system, depends on the forces in the rods 

from the action of unit forces on the nodes in the direction of movement of the nodes and is determined by the 

Maxwell-Mohr formula: 
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where EF  is the stiffness of the rods, 
( )iS  is the force in the rod    from the action of a single force at node i; l  

is the length of the rod . The stiffnesses of all rods are assumed to be the same; therefore, the value EF does not 

have the   index. Three support rods are assumed to be non-deformable. The compliance matrix of the truss is 

inverse to the stiffness matrix N ND = 1 / B . 

The forces in the rods of a statically determinate structure are found from the solution of a system of 

algebraic equations of equilibrium of nodes. The matrix of the system of equations includes the guiding 

cosines of the forces in the rods. To do this, the nodes and rods are numbered (figure 2), and the 

coordinates of the nodes and the order of connecting the rods are entered into the program, just as graphs 

are set in discrete mathematics. To solve the problem, we use a program in the language of the Maple 

computer mathematics system described in [29]. The algorithm used in this program is easily 

implemented in other computer mathematics systems (Mathematica, Reduce, Maxima [30]). 



 

FIGURE 2. Numbering of rods and nodes, n = 1, m=2. 

 

Calculation of the spectrum of natural frequencies 

The system of differential equations of vibrations of 0N  loads is written in matrix form: 

 

N NM U + D U =0 ,                                                                       (2) 

 

where 1[ ,..., ]T

NU u u  are the displacements of the masses. This vector includes both horizontal and vertical mass 

movements. Denoted by: ND  is the stiffness matrix, NM  is the diagonal inertia matrix of size N N , and U  is 

the acceleration vector. Since all masses are the same, the inertia matrix is expressed through the unit matrix 

N NM I  . If we multiply (2) by NB  on the left, then, taking into account the identity 
2U = - Y , the problem is 

reduced to the problem of the eigenvalues of the matrix NB : NB U = U,  where 
21/ ( )    is the eigenvalue of 

the matrix NB ,   is the natural frequency of oscillations. The solution to this problem is possible only 

numerically. 

Dunkerley method 

We find an analytical expression of the first oscillation frequency using the approximate Dunkerley method. We 

denote ,k v  the partial frequency of vibrations of the mass   at the node k vertically and ,k h  the frequency of 

vibrations horizontally. The lower estimate of the first vibration frequency is given by the formula: 
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Equation (2) in the case of oscillations of one mass has a simple scalar form 

 

0, 1,..., ,k k ku d u k N   
 



where ku  is the displacement of the mass, kd  is the stiffness coefficient. The vibration frequency of an individual 

mass has the form /k kd   . The stiffness kd  is the inverse of the malleability, which is calculated by 

Maxwell – Mohr's formula: 
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According to (3), we have: 
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The sums v  and h  are calculated separately for vertical and horizontal fluctuations, respectively. 

To obtain the dependence of the solution on the number of panels n in the crossbar and the number of 

panels m in the supporting parts, double induction is required. To do this, first, for 1m  , according to the 

data of solutions for a sequence of trusses with 1,  2,  3...n  , a general formula is obtained, then the same 

procedure is repeated for 2,  3,  4,...m  . A series of solutions obtained for different m is generalized to 

an arbitrary case. For 1m  , we have the following solution for the sum corresponding to the vertical 

oscillations: 
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Here we have introduced a notation for the length of the brace 2 2 .c a h   Using the operators of the 

Maple system; we can find common terms of sequences of coefficients in these expressions: 
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where the coefficients have the form 
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Similarly, if 2m  , we have the following coefficients 
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Continuing this process further and finding the coefficients successively for m=3,4,..., we obtain a 

generalization of the formulas for the coefficients in (5) to an arbitrary number m: 
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In the same way, for the sum related to the horizontal mass fluctuations, we have the following expressions for 

arbitrary numbers m and n 
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The final expression of the dependence of the lower bound of the first frequency on the geometric 

parameters of the structure, including the number of panels in the crossbar and the supporting side trusses, 

will take the form: 

 

 3 3 3 32 2

1 2 3 4

3 3

5 6

.
( ) / ( ) /

D

EF

C C c C h h aC C c aa C h


  



      (6) 

 

To check the result, you can perform all the transformations in reverse order: first, perform induction 

on m, and then on n. It is even better to compare the obtained frequency with the smallest of the entire 

spectrum of natural oscillation frequencies of the system obtained numerically. 

RESULTS AND DISCUSSION 

It is possible to solve the oscillation of a system with 3N   degrees of freedom only numerically. Judging by 

equation (2), the problem is reduced to determining the eigenvalues of the matrix NB . To do this, we use the 

Eigenvalues operator from the LinearAlgebra package of the Maple system. Figure 3 shows the curves of 

dependence on the number of panels in the crossbar of the first frequency 1  of the spectrum obtained numerically 

and analytically (6) for the value D  at m = 4. The elastic modulus of the aluminum is
50.7 10 MPaE   , the mass 

 1000 ,  3 m,  3 mkg a h    , the cross-section of the rods 
225 smF  , are accepted.  

 



 

FIGURE 3. Frequency dependence on the number of panels; I is numerical solution 1 ;  

II is analytical assessment D , m=4. 

 

To compare the results, we will find a relative error of 1 1( ) /D     . With an increase in the 

number of panels in the crossbar, the error first increases and then decreases (figure 4). The nature of this 

change significantly depends on the number of panels in the vertical side parts of the frame. Frames with 

a smaller number of panels m have a maximum error at a certain value of n. In higher frames, the 

extremum shifts towards frames with a large span or disappears altogether. In any case, the error of the 

resulting formula is not large. For the selected design characteristics, this value does not exceed 11%. The 

greatest error of the obtained estimate is found with a small number m of frame panels in height. 

 

FIGURE 4. The error of Dunkerley's estimation depending on the number of panels. 



CONCLUSION 

The main results of the work are as follows: 

1. A simple model of natural vibrations of a frame with an arbitrary number of panels has been developed. 

2. Using the double induction method, the expression for the lower limit of the first vibration frequency of the 

structure is obtained depending on the size of the frame and the number of panels. 

3. Comparison with the numerical solution showed that the found analytical solution has good accuracy, 

depending on the number of panels. 
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