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ABSTRACT

Introduction. The first (lowest) frequency of natural vibrations of a structure is one of its most important dynamic
characteristics. Analytical solutions supplement numerical ones; they can be efficiently used to perform a rapid assessment
of properties of structures, to analyze and optimize constructions and to test numerical results. A space cantilever truss
consisting of three planar trusses with a rectangular grid is considered in the article. The objective is to find the analytical
dependence between the frequency of natural vibrations of a structure and the number of panels. It is assumed that the truss
mass is distributed among the joints. Only the vertical mass displacement is taken into account.

Materials and methods. Forces, arising in cantilever rods, are calculated by the Maple software as symbolic expressions,
and the method of joint isolation is used here. The stiffness matrix is identified using the Mohr integral. Rods are assumed
to be elastic, they have identical stiffness. The lower value of the vibration frequency is determined using the Dunkerley
method. The final calculation formula used to identify the value of the vibration frequency is derived using the method of
induction applied to a series of analytical solutions developed for trusses with a consistently increasing number of panels.
When common members of sequences are found, genfunc operators of the Maple system are used. The analytical solution
is compared with the numerical solution in terms of the first frequency using the analysis of the system spectrum featuring
many degrees of freedom. The eigenvalues of the characteristic matrix are identified using the Eigenvalues operator from
the Linear Algebra package.

Results. The comparison between the analytical values and the numerical solution shows that the Dunkerley method
ensures the accuracy varying from 20 % for a small number of panels to 3 % if the number of panels exceeds ten. The size
of the structure, the weight and stiffness of rods have little effect on the accuracy of the obtained values.

Conclusions. The lowest value obtained using the Dunkerley method in the form of a fairly compact formula has good
accuracy, its application to a space structure with an arbitrary number of panels has a polynomial form equal to the number
of panels, and it can be used in practical calculations.
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Pacuer 3aBMCMMOCTH YaCTOTHI KOJICOAHUH MMPOCTPAHCTBEHHOM
KOHCOJILHOM (pepMBbI 0T YHCJIA MaHe el

M.H. Kupcanos, O.B. BopoobeB

Hayuonanwnuiii uccnedosamenvckuil ynugepcumem « Mockogckuil snepeemuyeckuii UHCmMumymy
(HUY «MOHy); . Mockea, Poccus

AHHOTALUMUA

BBepeHue. MepBas (H13LLasn) YacTtota COBCTBEHHbIX KONebGaHW KOHCTPYKLMMN SABMSIETCA OAHOMN U3 €€ BaXKHENLLMX AUHAMUYECKUX
XapaKTepUCTUK. AHaNMTUYECKNE PELLEHNS AOMOMNHSAT YNCTEHHbIE, OHW YAOOHbI Anst GbICTPOM OLEHKW CBOWCTB COOPYXKEHUS U
MOTryT GbITb MCMOMNb30BaHbI 415t aHANM3a U ONTUMU3ALMU KOHCTPYKLMK, U BLINIOMHSATL POlb TECTOB NSt YUCTEHHbBIX PE3YNbTaToB.
PaccmatpuBaeTcsi NpoCTpaHCTBEHHAst KOHCOMbHas oepma, COCTaBneHHasi U3 Tpex NMockux hepm € NPSIMOYTONbHOW peLleT-
Kon. CTaBuTCA 3aaqa HauTV aHaNMUTUYECKYHO 3aBUCMMOCTb COBCTBEHHOW YaCcTOThl KonebGaHmin KOHCTPYKLMK OT Ynicra NaHenen.
Mpennonaraetcs, 4To Macca depMbl pacnpeaeneHa no yanam. YUYnMTbIBaloTCs TOMNbKO BEpTUKarbHble NepeEMELLEHNS Macc.
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Matepmanbl 1 MeToAbl. Pacyet ycunuin B CTEPXHSAX KOHCOMMW B CMMBOJIbHOW (hOpMe MpOoM3BOAUTCH B NporpamMme, CO3-
[aHHOW B cUCTEME KOMMbIOTEPHOWM MaTeMaTukn Maple ¢ ucnonb3oBaHvem MeToAa Bbipe3aHus y3noB. MaTtpumua xecTkocTun
HaxoamTcs ¢ NoMoLLbo MHTerpana Mopa. CTepXHU NPUHUMAKOTCS YNPYrMMy C OAUHAKOBOW XXECTKOCTbI. HWXHsIA oueHka
yacToTbl konebaHui onpefensieTcs no metody [oHkepnes. Mo cepun aHanUTUYECKUX peLLeHuiA Ans depm C nocnegosa-
TEMNbHO YBENNYMBAKOLLMMCS YMCIIOM MaHenen MeTogoM MHAOYKUMU BbIBOAUTCSI UTOrOBasi pacyeTHasa dopmyna anst 4acTo-
Tbl konebaHun. Mpu HaxoxgeHun obLLMX YNEHOB NOCreaoBaTeNbHOCTEN UCMONb3YIOTCA onepaTopbl CneumnanbHOro nakeTta
genfunc cuctembl Maple. AHanuTnyeckoe pelueHue CPaBHUBAETCS C YUCIIEHHBIM peLleHneM Ans NepBor YacToTbl, Nomny-
YEHHbIM U3 aHanu3a criekTpa CUCTeMbl C MHOTUMU cTeneHsmMmn cBoboabl. COBCTBEHHbIE YMCMNa XapaKTepUCTUHECKON MaTpu-
Libl HanaeHbl ¢ noMoLpblo onepatopa Eigenvalues us naketa LinearAlgebra.

PesynbraTtbl. CpaBHeHVE aHaNMTUYECKON OLIEHKM M YMCMEHHOTO peLLeHUsi NoKasbiBaeT, YTo MeTof [loHkepnes gaer Touy-
HOCTb, MeHsoLytocsa oT 20 % npu manom yucne naxenen o 3 %, ecnu Yicno naHenen 6onblie gecatn. Pasmepbl KOH-
CTPYKLMMW, MACChl 1 KECTKOCTb CTEPXXHEW Mano BWSAOT Ha TOYHOCTb NMPUBEAEHHOW OLEHKN.

BbiBoabl. [TonyyeHHas HUXKHAS oueHka no meTtoay [loHkepnesi B Buae 4OCTaTOMHO KOMMAKTHOM (hOpMYyIbl MUMEET XOPOLLYHO
TOYHOCTb, €€ peanu3auusi 4nsi NPOCTPAHCTBEHHOW KOHCTPYKLUW C MPOM3BONbHBIM YMCIIOM NaHenen B BUae noriMHOMOB Mo
yncny naHenemn MoXet GbiTb MPUMEHEHA B MPaKTUYECKUX pacyeTax.

KNOYEBbIE CITOBA: koHconbHas chepma, konebaHusi, yactota, metog [JoHkepnes, Maple

bnazodapHocmu. PaboTa BeinonHeHa npu nogaepxke MexaucumnnmHapHon Hay4Ho-o6pasoBaTenbHow wkonbl MY «PyH-
AamMeHTanbHble U NpUKnagHble KOCMU4YeCKkue nccrnegoBaHua».

ona UMTUPOBAHUA: KupcaHos M.H., Bopobbee O.B. The analysis of dependence of the vibration frequency of a
space cantilever truss on the number of panels // BectHuk MI'CY. 2021. T. 16. Bein. 5. C. 570-576. DOI: 10.22227/1997-

0935.2021.5.570-576

INTRODUCTION

The calculation of frequencies of natural vibrations
of structures is usually performed in the numerical form.
For regular, statically determinate trusses, having a peri-
odic structure, some solutions of the oscillation problem
are known; they are implemented in the system of com-
puter mathematics in the form of finite formulas that en-
compass the number of panels in the form of a parameter
[1, 2]. Problems of structures and methods used to ana-
lyze regular statically determinate rod systems were first
raised in [3-5]. The reference book [6] contains various
patterns of planar regular trusses and formulas needed
to calculate their rigidity for an arbitrary number of pan-
els. Separate analytical solutions, designated for planar
statically determinate trusses, that entail the rigidity cal-
culation using the induction method in the Maple sys-
tem, are found in [7-9]. The induction method applied
to these solutions can also be used to solve the problem
of an oscillating truss [10—12]. In both cases, the matrix
or the stiffness coefficient of a structure is identified using
the Mohr integral. Other algorithms are also available for
the analysis of regular (planar, space, and statically in-
determinate) rod structures [13—15]. Practical problems
of trusses, in which vibration frequencies are analyzed,
are usually solved using the finite element method and
associated with optimization problems [16-20]. Apart

from that, one can single out the solution to problems
of nonlinear oscillations [21-23].

In this paper, we consider a cantilever-type space
truss having » identical panels, composed of three pla-
nar trusses (Fig. 1). The quadrature circuit of the struc-
ture’s rod has the shape of an isosceles triangle (Fig. 2).

The number of truss members is 7, =9(n+1);
the number ofjoints is 3(n+ 1). The total number of rods in-
cludes six support rods. Three members ensure the spher-
ical support in joint A, two of them ensure the cylindri-
cal support in joint B. Another support, a horizontally
supported rod, is located in the upper belt of the struc-
ture. The truss has a statically determinate construction.
The inertial properties of the structure are simulated
by separate masses p located in all truss joints, except
for supports 4 and B. Thus, the number of the degrees
of freedom of the system is K =3n + 1.

MATERIALS AND METHODS

An analytical solution to the problem of the fre-
quency spectrum of natural oscillations of systems hav-
ing a large number of degrees of freedom will not be
feasible because it is impossible to analytically iden-
tify the roots of algebraic equations in a degree higher
than the fifth one. There are several methods that ensure
an approximate solution to this problem; they can be
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Fig. 1. Truss,n =15
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Fig. 2. The quadrature circuit of the truss

used to develop solutions in the form of finite formulas.
The most suitable ones are the Dunkerley method and
the Rayleigh method, which do not make it necessary to
calculate all elements of the characteristic matrix. These
methods require the values of diagonal elements, which
can be obtained by solving the problem of vibration
of individual loads applied to the joints having pre-set
mass. However, the Dunkerley method offers a solution
in the form of only a trace of the characteristic matrix.
In the Rayleigh method, the mathematical component
of the solution is somewhat more complex, although
the accuracy of this method is much higher [24]. Let’s
consider a simpler Dunkerley method, used to identify
the value of the first natural frequency of the bottom.
The approximate value of Dunkerley frequency ) is
expressed through partial frequency o,:

K
o, =1/ 1/e.
p=l1

To calculate partial frequencies, we make a diffe-
rential equation of displacement that encompasses mass pL:

(M

w,+d,z,=0,p=1,.,K,

where dp is the stiffness coefficient; z, is the mass displace-
ment, and 2[, is the acceleration. Hence, the vibration
frequency of a single load has the form: ©, =,/d, / .
The coefficient of rigidity is calculated using the Mohr
integral:

n.—6

5,=1d, =3 (59) 1, J(EF).

=

2

10 8

Hence, S'j(.” ' are the forces in the rod, where j
comes from the action of a single vertical force applied
to the joint where mass p with the p number is located,
E is the Young’s modulus of the member material, F is
the cross-sectional area of the rods. The cross sections
and the material of the members (except for the three sup-
porting ones) are assumed to be the same. It is assumed
that the six supporting members will not deform. Expres-
sions (1), (2) are used to derive the following equation:

K
©y =pY 3, =pA. (3)
p=1

To determine the forces included into the Mohr in-
tegral (2) in the analytical form, we use the truss calcula-
tion software [1], compiled in the language of computer
mathematics Maple. The software enters the coordinates
of joints, the order of connection of hinges and rods, and
compiles a matrix for the system of equations of the equi-
librium of joints along three axes: x, y, z. The members
and hinges of the truss are numbered (Fig. 3). The origin
is located in spherical support 4. Coordinates are entered
in cycles with a parametrically defined length:

Xi = Xisnn = Xipopsa = a(l _1)9
yi = 09 yi+n+1 = 2b7 yi+2n+2 = b’
z,=2,,,=0,z, ,=hi=1 ..,§n+l

The structure of the lattice is based on the num-
bers of the ends of corresponding members by analogy
to the method of discrete mathematics used to make
graphs. Longitudinal members of lower and upper
belts, for example, are represented as:

N, =[i,i+1], N, =[i+n+]1,i+n+2],
N

ioon =Li+2n+2,i+2n+3].

Hence, the matrix for the system of equations
of the equilibrium of joints is filled. Matrix elements
are the guiding cosines of the forces arising in the mem-
bers. The solution to the system generates the values
of forces in the analytical form.

The analysis of trusses having a different number

of panels n shows that each time value A represents:

11 9

3(n+1)

10

Fig. 3. Numbered joints and truss members if 7 = 3, and if joints and masses are highlighted
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AL (n+1)(Ca’ +C,b* +Cic* +C,d* + C f°)
EFR’

NG

where the lengths of braces are:

A=+, c=Na +b* +1*, f=\a’+4b>.
For a series of analytical solutions obtained for
trusses with a sequentially increasing number of pan-

els, the coefficients in (4) are derived using the method
of induction:

C =n(3n* +n+4)[8,C, = (4n+1)/2,
C,=5n/4,C,=(5n+2)/4,C,=n/4.

As a result, we have the following dependence
of the first frequency on the size of the truss, the mass,
and the number of panels:

2EF 5)

®, =2h .
w(n + 1)(;1(3,12 +n+4)a’ +4(4n+1)b’ +10nc’ +2(Sn+2)d’ +2nf° )

RESEARCH RESULTS

The numerical verification can be performed
in any system designated for the analysis of building
structures. As a rule, such systems use the finite element
method to make calculations. The truss is statically de-
terminate, the forces in its members can be calculated
using the same software in which the analytical solu-
tion (5) was obtained by converting it to the numerical
mode. You can also specify all the initial geometrical,
material, and inertial parameters of a structure not as
symbols or integers, but as decimal numbers. The Ma-
ple system will automatically calculate everything.

The solution to the problem of vibration of a sys-
tem having many degrees of freedom is related to the ei-
genvalue problem. Here is a differential equation de-
scribing the dynamics of a system with a finite number
of degrees of freedom:

MZ+D,Z=0, (6)

Where Z is the displacement vector of the mass
system, Z is the acceleration vector, D, is the stiffness
matrix, and K is the number of degrees of freedom. In
the case of identical masses, inertia matrix M, is diago-
nal: M, = pl, 1, is the unit matrix. For harmonic vibra-
tions having frequency o, the replacement Z = -0'Z
is valid. The matrix is the inverse of compliance matrix
N, the elements of which are calculated using the Mohr
integral:

n.—6
b, = Z} SVSD1 J(EF),

where, by analogy with (2), S.” is the force in member
a arising from the action of a single vertical force in
joint i. Multiplying (6) by B,, we obtain the eigenvalue
problem: B, Z = \Z, where A = 1/(w’p) are the eigen-
values of the matrix. Eigenvalues, a special operator, is
used to determine the eigenvalue of a matrix in the Ma-
ple system.

DISCUSSION AND CONCLUSIONS

We present the comparison of numerical and ana-
lytical methods. Consider a steel truss having mass
p = 1000 kg in the joint. We assume the modulus

of elasticity £ =2 - 10° MPa, F = 109 sm?, a =2 m,
h =b =1 m. In the graph (Fig. 4), the Dunkerley curve
o, constructed according to formula (5), is located be-
low the curve of the first frequency ®,, obtained nu-

o, c’! \
70 1+
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T T T T T T T T y T T T T T T 1N

2 3 4 5 6 7 8 9 10
Fig. 4. Comparison with the frequency dependence on the num-
ber of panels obtained numerically
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Fig. 5. Dependence of accuracy on the number of panels
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merically. As the number of panels increases, these two
solutions converge.
To estimate the error value, we enter value

e=(0, —mD)/ml .

Fig. 5 shows the dependence of the error on the n
number for three values of the cantilever width. The ac-
curacy increases quite rapidly along with the number
of panels, approaching a quite acceptable error of a few
percent. Thus, the value of the obtained analytical solu-
tion increases precisely in those cases when numerical
solutions have the least accuracy due to the increase
in the dimensions of the matrices used (the matrices
of the system of equilibrium equations and the stiffness

matrix) with the inevitable accumulation of rounding
errors. Increasing the width of truss b does not signifi-
cantly reduce the accuracy of the lower value. The same
pattern applies to dependence of accuracy on height /.

The spatial truss model having masses concentrated
at the joints and a restriction imposed on the vertical dis-
placement of masses is probably the simplest one, if we
do not consider planar truss models. Another simplifica-
tion of the accepted model, the equality of the stiffness
of all members, is not essential. The obtained solution
can be generalized by applying relative stiffness coeffi-
cients to individual groups of members having the same
length. The formula (4) will be as follows:

A :(n+1)(c1a3/Ya +C2b3/Y1> +C303/Yc +C4d3/Yd +C5f3/Y_f )/(EFOhZ)’

where the stiffness of rods is expressed in terms of re-
duced stiffness: EF =v EF,, ..., EF =y EF,.

The above algorithm used to derive the formula ap-
plied to identify the dependence of the natural vibration
frequency on the number of panels shows that the result

has a compact form and a sufficiently high accuracy. An
attempt to employ the Rayleigh method in a similar for-
mulation using Maple transformations in the symbolic
form shows that the final formula turns out to be cumber-
some and not very convenient for use in practice.
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