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Abstract: 
The object of research is spatial structure of a rectangular contour-type cover. A diagram of a 

statically determinate truss in the form of a closed rectangle with supports along the inner contour is 
proposed. The truss consists of quadrangular bar pyramids assembled into a square contour with tops 
connected by a bar belt. Four horizontal braces are located at the corners of the structure. A vertical 
load is considered, evenly distributed over the nodes of the truss. Method. The design is statically 
determinate, therefore, to calculate the forces in the rods, it is enough to solve the system of equations 
for the equilibrium of nodes. The matrix of the system of equilibrium equations consists of the direction 
cosines of the forces, which are calculated from the coordinates of the nodes. The derivation of the 
formula for the dependence of the deflection of several characteristic points of the structure on the 
number of panels in the truss is given. The conclusion is based on an inductive generalization of the 
decision sequence for structures with an increasing number of panels. The coefficients of the sought 
formulas are found from the solution of homogeneous linear recurrent equations. Results. The solution 
of the equilibrium equations of the nodes and all transformations are performed in the Maple symbolic 
mathematics system. Linear asymptotics of solutions are found. The two main results of the work are 
the development of a scheme for a regular spatial statically determinate rectangular truss and obtaining 
an analytical dependence of the deflection of the structure on the number of panels. 

 

1 Introduction 

Truss structures are most often used in roofing structures for public buildings, industrial and 
commercial enterprises. They are convenient and inexpensive to assemble, durable and versatile. 
Calculation of deformations, strength, and stability of truss structures is usually performed numerically 
in specialized computer programs based on the finite element method [1]–[3]. Numerical calculation is 
applicable for a very wide class of rod systems, including statically indeterminate ones. Analytical 
solutions used for simplified models of statically determinate structures are of particular importance in 
the calculations. The practical significance of such calculations is the greater, the more parameters of 
the object under study are included in the calculation formula, for example, the formula for the 
deflection or natural vibration frequency. In regular trusses containing periodic elements in their 
structure, it is most important to take into account their number (system order). This significantly 
expands the range of applicability of the formula and removes the question of accuracy, which is 
inevitable for large-order systems. The existence and design of statically determinate regular bar 
structures are considered in the works of Hutchinson and Fleck [4], [5]. Formulas for deflection of 
planar regular trusses, frames, and arches with various loads are collected in reference books [6], [7]. 
These formulas are obtained by induction in the Maple symbolic mathematics system [8]. The method 
of induction in the Maple system was applied in  [9] to obtain a two-sided analytical estimate of the first 
oscillation frequency of a regular truss. In [10] the problem of the oscillation frequency of a two-span 
truss was solved using the Dunkerley method. Formulas for deflections of a planar arched truss of a 
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regular type are obtained in [11], [12].  The formulas for the deflection of a planar externally statically 
indeterminate truss are obtained in  [13]. 

 
 
In [14]–[16], to solve structural mechanics problems in an analytical form, the method of 

expanding solutions into series using the Maple symbolic mathematics system was applied. Algorithms 
for the analytical calculation of various types of lattices without using the induction method are given in 
[17], [18]. 

A new scheme for a regular statically determinate spatial coverage structure is proposed here. 
The task is to derive the analytical dependences of the truss deformations on the number of panels. 
The formulas obtained can be used to evaluate numerical solutions, especially for large-scale 
structures, for which an inevitable error of accumulated round-off errors appears in numerical 
calculations. 

 

2 Materials and Methods 

The goal was to develop a scheme of a regular statically determinate truss in the form of a 
square gallery with supports along the inner contour. The console part of the structure is supposed to 
accommodate objects around the entire perimeter, for example, cars that have free entry and exit. The 
gable shape of the coating is planned to protect the structure from atmospheric precipitation and 
increase the rigidity of the structure. 

The proposed cover is a square structure in a plan, consisting of pyramids (Figure 1), connected 
at the tops with a rod square contour (Figure 2). 

 
Fig. 1. Structural element (panel) 

 
Fig. 2. Cover design and designation of some characteristic rods, n=6 

The height of the pyramids h, the length of the side of the base a. The order 2n >  of the regular 
construction is equal to the number of panels on each side of it. The lower faces of the pyramids form 
two contours. The inner lower contour of the structure is fixed on vertical posts and four additional 
horizontal ties at the corners of the structure (Fig. 3).  
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Fig. 3. Node numbering and horizontal links, n=4 

The support rods are assumed to be non-deformable. The whole structure consists of 
36( 1)m n= −  rods including support rods. Uniform nodal vertical load is applied to all nodes, except for 

the nodes of the inner lower contour (Fig. 4). The outer lower contour of the truss forms a circular 
cantilever part of the structure. 

 
Fig. 4. Uniform load on the truss, n = 4. Horizontal ties in the inner corners of the structure are not 
shown 

The absence of a diagonal tie in the base in the pyramids (Fig. 1) gives the structure additional 
volume. 

 The calculation of the forces in the rods is performed by cutting out nodes in an analytical form. 
To calculate the deflection, the Maxwell – Mohr formula is used under the assumption that all the rods, 
except for the support ones, are linearly elastic. In the sequences of coefficients in the formulas for 
trusses of various orders, there are common terms that give a view of the final dependence of 
deflections on the number of panels, truss size, and load. All transformations, solving the system of 
linear equations of equilibrium of nodes, and finding solutions to recurrent equations for the desired 
coefficients are performed in the Maple computer mathematics system. 

3 Results and Discussion  

3.1 Forces 
The analytical form of the sought dependences of the structure deformations on its order involves 

the calculation of forces in a statically determinate structure in symbolic form. In the program written in 
the language of symbolic mathematics Maple [19], the equations of equilibrium of nodes in the 
projection on the coordinate axis are compiled. The system of equilibrium equations GS T=  ( S  — 
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vector  of forces of length k, T  — vector of loads) includes not only the forces in the rods but also the 
reactions of the supports. The nodes and bars of the truss are numbered (Fig. 3). The coordinates of 
the nodes of the lower outer contour, for example, have the form 

2 2

3 3

2 3

( 1), 0,
, ( 1),
( 1), ,

0, ( 1),
0, 1,..., .

i i

i n i n

i n i n

i n i n

i i n i n i n

x a i y
x an y a i
x a n i y an
x y a n i
z z z z i n

+ +

+ +

+ +

+ + +

= − =

= = −

= − + =

= = − +

= = = = =

 

Coordinates of other nodes are set similarly (in a cycle). The order of connecting rods is similar to 
defining a graph in discrete mathematics. Bars are specified by their end numbers. The numbers are 
written in conditional vectors , 1,..., .iN i k= For example, for a closed lower outer contour: 

4[ , 1], 1,..., 4 1, [1,4 ].i nN i i i n N n= + = − =  
These data are used to calculate the direction cosines of the forces in the rods, which are 

elements of the matrix of the equations of the equilibrium of the nodes. 
Equilibrium equations require the projection of the vector rods on the coordinate axes: 

,1 ,2 ,1 ,2 ,1 ,2, , ,, ,
i i i i i ix i N N y i N N z i N Nl x x l y y l z z= − = − = − . The direction cosine matrix G  has components: 

,1 ,1 ,1

,2 ,2 ,2

3 2, , 3 1, , 3 , ,

3 2, , 3 1, , 3 , ,

/ , / , / ,

/ , / , / .
i i i

i i i

N i x i i N i y i i N i z i i

N i x i i N i y i i N i z i i

G l l G l l G l l

G l l G l l G l l
− −

− −

= = =

= − = − = −
 

where 2 2 2
, , ,i x i y i z il l l l= + + . The first coordinate of the vector iN  is designated ,1iN  (conditional start of 

the bar), the second coordinate ,2iN   (end of the bar). Three rows of the matrix correspond to each 
node of the structure. The first two contain the direction cosines with the x and y axes, the third — with 
the vertical z axis.  

On the right side of the system of equations, there are loads applied to the nodes: 
3 , 1,...,8 4.iT P i n= − = −   The solution of the system of equations GS T=  gives the forces in the rods 

[22].  
The picture of the distribution of forces in the truss rods with a load along the upper chord 

referred to the load P in the numerical form at 4, 1mn a h= = = , is shown in Fig. 5. The thickness lines 
are conditionally proportional to the modules of the corresponding forces. Stretched elements, for 
example, the bars of the upper contour, are highlighted in blue and compressed in red. The number 
indicates the value of the relative forces with an accuracy of two digits. Under such a load, the inner 
lower contour is compressed, the outer one, except for the corner bars, is stretched. All vertical support 
rods are compressed (not shown). Horizontal corner braces (not shown in the figure) are not stressed 
in the absence of a horizontal load. 
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Fig. 5. Distribution of forces in the truss rods, n=4 

 Let us find analytical expressions for the dependencies in the most compressed and stretched 
bars of the structure. Consider the case of an even number of panels on the side of the structure 

2n k= . Sequential calculation of the results in the bar of the middle side of the contour gives the 
following expressions 

I

I

I

I

2 : 2 / ;
3 : / ;
4 : 7 / ;
5 : 16 / ,...

k S Pa h
k S Pa h
k S Pa h
k S Pa h

= =
= = −
= = −
= = −

 

 The common term of this sequence gives an expression for the dependence of forces on the 
number of panels: 2

I (3 9 2) / (2 )S Pa k k h= − − + . Similarly, formulas for forces in other rods are 
obtained: 

2 2
II III

IV V

(3 3 2) / (4 ), (3 15 4) / (4 ),
3 / (2 ), / (2 ).

S Pa k k h S Pa k k h
S Pck h S Pa h

= − − = − +
= − = −

 

 Support reactions are found similarly (Fig. 6). By induction on the number of panels, the 
following expression is obtained: ' (3 4) , '' .Z n P Z P= − = −  

 The reactions of the angular supports depend on the order of the system n and are directed 
upwards, while the values of the reactions of the internal supports do not depend on n and are directed 
downward, performing not a supporting, but a holding function. 

 
Fig. 6. Reactions of supports from the action of a uniform load, n = 6. 

The graph (Fig. 7) shows the dependences of these forces, referred to the total load 
0 4(4 1)P k P= −  on the structure, assuming a constant length 2 10mL ka= =  of the side of the truss. 
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Fig. 7. Dependence of the relative forces in the rods on the number of panels 

Depending on the number of panels, some of the bars can be either compressed or stretched. 
With an increase in the order of the structure k, the dependence of the relative forces in the proposed 
formulation (the length of the cover side and the total load are constant) levels out. At the beginning of 
the graph, with a small number of panels, the dependencies change quite significantly. The obvious 
asymptotics of the solutions can be traced: 

I 0

II 0 III 0

IV 0 V 0

lim / 3 / (64 ),

lim / lim / 3 / (128 ),

lim / 3 /16, lim / 0.

k

k k

k k

S P L h

S P S P L h

S P S P

→∞

→∞ →∞

→∞ →∞

= −

= =

= − =

 

For brace IV and horizontal connection V along the lower contours, the limiting values do not 
depend on the dimensions of the structure and are a kind of constants of the structure scheme. 

3.2 Deflection 
Select three points A, B, C on the outer bottom contour, the deflection of which will be calculated. 

In the case of calculating the deflection of node C the  even order of truss  is assumed: 
2 , 1,2,3..n k k= = . The deflection is determined by the Maxwell – Mohr formula: 

( ) (1)

1
.

Pm m S S l
EF

−
α α α

α=

∆ = ∑


                                                                   (1) 

 The sum is calculated for all elastic bars of the structure, except 4( 1)m n= −  for the supporting 

ones, which are assumed to be rigid. The following designations are introduced: ( )PSα — force in a bar 

with a number from the action of an external load, (1)Sα — force in the same bar from the action of a 
single vertical force applied to the node whose deflection is measured, lα — bar length, EF — bar 
stiffness. 

For the deflection of node A of a row of trusses with a sequentially increasing number of panels, 
the following formulas are obtained 
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3 3

2

3 3

2

3 3

2

3 3

2

(116 11 )3, ,
16

(96 7 )4, ,
8

(232 17 )5, ,
16

5 (10 )6, ,...
4

P a cn
h EF

P a cn
h EF

P a cn
h EF

P a cn
h EF

+
= ∆ =

+
= ∆ =

+
= ∆ =

+
= ∆ =

 

Thus,  a general view of the dependence of the deflection on the number of panels is: 
3 3

1 2
2

( ) ,P C a C c
h EF

+
∆ =                                                          (2) 

where   2 22 4c a h= + . The coefficients 1C  and 2C  in this dependence are determined by the 
induction method. 

For example, the coefficient 1C  is found from the solution of the homogeneous linear recurrent 
equation of the ninth order 

 1, 1, 1 1, 2 1, 3 1, 4 1, 55 10 10 5 ,n n n n n nC C C C C C− − − − −= − + − +  
This equation gives the Maple operator rgf_findrecur for the values of the sequence of 

coefficients 116/16, 96/8, 232/16, 50/4, ....  This operator has the following call form: rgf_findrecur(N, 
seq, u, n), where N is the order of the recurrent equation equal to the number of pairs of numbers in the 
sequence under study seq, u is the function name for sequence, n — name, index variable for the 
recurrence. For example, the operator rgf_findrecur (2, [1, 2, 4, 8], u, n) gives the equation u (n) = 2u 
(n-1). In cases where the length of the sequence is not enough to obtain the equation, the operator 
gives an equation with fractional coefficients, which does not make sense in this formulation. This 
forces you to do a few more (even number) truss calculations. 

To solve recurrent equations, the Maple system has the rsolve operator. Taking into account the 
initial data 1,3 1,4 1,5116 /16, 96 / 8, 232 /16, ...C C C= = = , the solution is obtained in the form 

2
1 ( 1)(3 24 16) /16.C n n n= − − − +                                                              (3) 

Similarly, find the coefficient 
2 (3 2) /16.C n= +                                                                          (4) 

The formula for the deflection of node B has the same form (2), but with the coefficients 
2

1

2

( 1)(3 36 40) /16,
(9 4) / 32.

C n n n
C n

= − − − +
= −

                                                            (5) 

The most difficult was the derivation of the formula for the deflection of the middle of the lateral 
side of the structure at point C. The case of an even number of panels was considered 2n k= . The 
coefficients in (2) in this case have the form 

  
4 3 2

1
2

2

(15 90 199 144 30) / 8,

(6 3 4) /16.

C k k k k

C k k

= − + − +

= − +
                                                 (6) 

Let us illustrate the dependence of the deflection on the number of panels for a truss of length 
15mL na= = with a total load 0 (8 4)P n P= −  on the lower chord. Let us introduce the designation for 

the dimensionless deflection: 
0

' EF
P L
∆

∆ = . Figure 8 shows three curves constructed according to 

formulas (2-4) for the deflection of the corner node A. It is interesting to note that the corner of a truss 
with a small number of panels falls, and starting from a certain critical number of panels, depending on 
the height of the truss, the angle under the action of the load rises. 

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


This publication is licensed under a CC BY-NC 4.0 
 

 

Kirsanov, M.; 
Mathematical model of a spatial rectangular contour-type truss deformations 
2022; AlfaBuild; 25 Article No 2505. doi: 10.57728/ALF.25.5   

The found dependence has a limiting value in a non-horizontal asymptote. The limit can be found 

using the Maple system: 3lim ' .
16n

h
L→∞

∆ =  

The limit value is positive; therefore, the curves cross the axis for some values n  of the number 
of panels. However, an approximate calculation shows that it is unrealistically large, and the effect of 
changing the sign of the deflection with a large number n  of panels has no practical significance. 

 
Fig. 8. Deflection of node A depending on the number of panels and the height of the truss,     I —

2.5mh = ; II — 2.0mh = ; III — 1.5mh =  

A different picture (Fig. 9) of the dependence of the deflection on the number of panels is given 
by function (2) with the coefficients (5) calculated for the case of the deflection of node B. The 
calculation was performed under the same conditions as for node A, but for 50mL = . The order of the 
curves plotted for different heights changes after a certain value of n. The node, instead of lowering 

' 0∆ > , rises ' 0∆ > , in the direction opposite to the action of the load. In this case, the amount of 
upward movement is greater, the smaller the height of the truss h. There is also a horizontal asymptote 

here: 9lim ' .
32n

h
L→∞

∆ =  
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Fig. 9. Deflection of node B depending on the number of panels and the height of the truss,     I —

2.5mh = ; II — 2.0mh = ; III — 1.5mh =  

The deflection of the truss in the middle of the side (node C), calculated by the formula (2) with 
coefficients (6), increases monotonically with an increase in the number of panels at a fixed side length 

50mL na= =  (Fig. 10).  

 
Fig. 10. Deflection of node C depending on the number of panels and the height of the truss,      I — 
h = 2.5 m; II — h=2 m; III — h=1.5 m 

Let's calculate the deflection from the action of an asymmetric load. Consider the action of a 
concentrated force in the middle of the span (n is an even number). In the calculation program, formula 
(1) will take the form 

( ) ( )
2(1)

1
/ .

m m
P S l EF

−

α α
α=

∆ = ∑

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The free member column will also change. Only one element of the vector on the right side of the 
system will be nonzero 3 , 1.iT P i k= − = +  

For trusses with different numbers of panels, a sequence is obtained 

 

3 3

2

3 3

2

3 3

2

3 3

2

(344 21 )3, ,
32

(4432 129 )4, ,
144

(4404 73 )5, ,
64

(10468 111 )6, ,...
80

P a ck
h EF

P a ck
h EF

P a ck
h EF

P a ck
h EF

+
= ∆ =

+
= ∆ =

+
= ∆ =

+
= ∆ =

 

The length of the sequence of solutions required to detect the pattern for an asymmetric load 
turned out to be 10. An additional difficulty in this calculation resulted from the fact that with an increase 
in the number of panels, not only the numerator in the answer changed, but also the denominator. 
Using the induction method from the results of analytical solutions, the following coefficients in (2) are 
obtained 

4 3 2

1

2

2

24 96 169 131 36 ,
24( 1)

4 6 3.
16( 1)

k k k kC
k

k kC
k

− + − +
=

−

− +
=

−

                                            (7) 

Similarly (for arbitrary numbers n), the coefficients in (2) are obtained when calculating the 
deflection of the corner joint A from the action of the concentrated force P 

4 3 2

1 2

3 2

2 2

6 21 26 17 12 ,
6( 2)( 1)

4 8 9 2 .
16( 2)( 1)

n n n nC
n n

n n nC
n n

− + − +
=

− −

− + +
=

− −

                                             (8) 

If a vertical force P is applied to the hinge B, then it receives a deflection calculated using the 
same formula (2) with the coefficients 

4 3 2

1 2

3 2

2 2

20 108 225 221 90 ,
24( 2)( 1)

2 7 7 1.
8( 2)( 1)

n n n nC
n n

n n nC
n n

− + − +
=

− −

− + −
=

− −

                                         (9) 

Note that for an asymmetric load, the solution is much more complicated even for one 
concentrated force. In the last three solutions, finding the common members of the sequences required 
analyzing the denominators of the sequence members. In the case of loading nodes A and B, the 
denominators nonlinearly depend on the number of panels. Maple operators for linear recurrence 
equations cannot find common members of such sequences. The type of the denominator here was 
selected manually. 

The reaction to the action of force at the corner points A, B and in the middle of span C turns out 
to be completely different. This can be seen from the relative deflection curves plotted in Fig. 11. With 
an increase in the number of panels at a constant truss side length L, the deflection at corner point A 
and point B decreases monotonically. Moreover, there is a limit (horizontal asymptote) 

' 'lim 2 / .A Bk
h L

→∞
∆ = ∆ =  
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Fig. 11. Dependence of the deflection at points A, B and C on the number of panels under the action 
of concentrated forces on them. 50m, 2mL h= =  

In the middle of the span (point C), the deflection increases with the number of panels. There is 
an oblique asymptote. In addition, from a comparison of these results with deflections from the action of 
a distributed load with the same dimensions of the structure, it follows that the deflections from a 
concentrated load are much larger. 

Corner supports create constraints in the vertical direction and one horizontal direction. 
Consequently, the support can be displaced along a different horizontal axis. It is not difficult to 
calculate the dependence of this displacement on the number of panels. If a uniform vertical nodal load 
is considered, then in the Maxwell-Mohr formula (1) the force (1)Sα  is from the action of the horizontal 

force. For nodes 8 3n −  and 10 7n − , the unit force causing forces (1)Sα  is axially x directed (Fig. 3). 
Using the induction method, an expression is obtained for the horizontal displacements of the 

supports 
2 2( 2)( 13 8) / (8 )x Pa n n n hEFδ = − − + . 

Figure 12 shows this dependence for the dimensionless quantity 0' / ( )EF P Lδ = δ  at 50m.L =  As 
the number of panels increases, the horizontal offset of the corner point decreases and then changes 
sign. It is characteristic that the critical number of panels corresponding to the change of signs does not 
depend on the size of the truss and the load. When rounding the root (13 137) / 2+  of equation 

0xδ =  to an integer, it turns out that the change of sign of the offset occurs at 12.n =  
After this point, there is also a change in the order of the curves obtained for different values of 

the height h. The resulting dependence has a horizontal asymptote 'lim / (64 ).xn
L h

→∞
δ = −  
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Fig. 12. Dependence of the horizontal displacement of the corner supports on the number of panels 
under the action of a distributed load, 50mL =  

3.3 Discussion 
The development of a statically definable spatial regular structure has specific features. For 

example, if the truss is rectangular, then four corner supports are assumed for it. This contradicts the 
condition that the plane is defined by three points. Of course, you can add fourth support and find its 
reaction by the force method or simply by choosing the reaction value from the symmetry of the 
problem and the equilibrium condition of the structure. But this approach deprives the scheme of 
universality to loads. For each load, especially an asymmetric one, it is required to select this value of 
this reaction or to re-disclose the static uncertainty. In the proposed coverage scheme, it was possible 
to obtain a solution to the bearing problem. Moreover, the proposed design has a cantilever part 
overhanging about the sides, which creates additional space not cluttered by supports. A regular 
triangular spatial truss [20] also calculated analytically, has a similar property. The tetrahedral bar 
pyramids were also used in the coverage scheme [21]. The lower limit of the first frequency of this truss 
was obtained analytically by the Dunkerley method [22]. 

The algorithm used to derive the formula for the deflection depending on the number of panels is 
known [19]. The peculiarity of using this approach for calculating the considered spatial structure 
manifested itself, as expected, firstly in the complication of compiling a mathematical model, and 
secondly, in a significant increase in the computation time. Symbolic conversions are noticeably more 
time-consuming than numeric conversions. 

The proposed scheme and its calculation can be considered as some basic one for more 
complex statically indeterminate structures, for example, with the overlap of the inner "courtyard" 
formed by the gallery. Without much difficulty, the solution can be generalized to a non-square 
structure. 

Note that the proposed solution is designed for rods of the same stiffness. However, the 
generalization of the solution to an arbitrary ratio of the stiffness of the rods is easy. In formula (2) it is 
necessary to enter the coefficients of relative stiffness:  

3 3
1 2

2
( ) .P C a C c

h EF
+ γ

∆ =  

In this case, EF  is the stiffness of horizontal bars of length a, and /EF γ  is the stiffness of 
inclined braces of length c. 
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4 Conclusions 

The proposed new scheme of a complex spatial cover and analytical expressions for its stress-
strain state is obtained. Statically determinate schemes of spatial regular constructions are rare. 
Hutchinson, R.G., Fleck, N.A. [5] the search for such schemes was even called "hunting". The 
proposed scheme is of a regular type, and the cantilever shape of its gallery makes it possible to use 
such a structure in the organization of structures with free access to the premises from four sides. The 
designers may somehow complicate the structure by adding some additional rods, supports, and 
connections to it. In this case, the proposed calculation formulas can be used by designers as some 
estimate of deflections and forces in a complicated structure. 

The main value of the solution obtained is the dependence on the number of panels. It is not 
difficult to obtain a simple formula for calculating the deflection of a specific structure. It is much more 
difficult and more important to find the dependence of the solution on the number of periodicity 
elements (panels, for example). Such solutions can be analyzed analytically and the most optimal 
parameters of the designed structure can be selected without volumetric recalculation of options in 
numerical form. Here, in the solution, asymptotics was found for the forces in some rods and 
deflections of the characteristic nodes of the truss. 

 Compared with the known solutions, the formulas obtained are quite simple and have the form of 
polynomials in the number of panels. One of the advantages of an analytical solution is the 
independence of its accuracy from the complexity of the design. For spatial trusses, this advantage is 
even more pronounced than for planar trusses. 

 In three-dimensional problems, with an increase in the number of rods in the structure, the order 
of the system of equations grows faster and the limit after which the error in numerical calculations 
becomes unacceptable is reached earlier.  

In addition, analytical solutions have more options for analyzing them. In particular, based on 
analytical solutions, it is easier to solve the problems of optimizing structures both in terms of weight 
and strength, and stability.  
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