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Abstract—The dependences of the first four frequencies of natural oscillations of a planar regular truss of the
thrust type are obtained numerically. A model is used in which the mass of the truss is concentrated in its
nodes. The Maxwell—-Mohr formula is used to calculate the rigidity of the truss. For the first frequency, an
analytical dependence on the number of panels is derived by the induction method using a simplified version
of the Dunkerley method in the Maple computer mathematics system. Good agreement with the numerical
result is shown. An analytical dependence of the static deflection of the truss on its dimensions and load is

obtained.
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INTRODUCTION

In practical calculations of the natural vibration
frequency of structures, specialized numerical pack-
ages based on the finite element method are usually
used [1—3]. An alternative calculation method is ana-
lytical, applicable to statically determinate regular
trusses. Two simple methods are known that provide
estimates of the first frequency: the Dunkerley method
(lower estimate) and the Rayleigh method (upper esti-
mate) [4]. Here, formulas are obtained for a two-sided
estimate of the vibration frequency of a planar cantile-
ver truss with a diagonal lattice. In [5], a simplified
version of the Dunkerley method with a more accurate
analytical solution is given. The analytical solution in
the form of a finite formula can be used to estimate the
numerical solution, especially since the accuracy of
such a method is not related to the number of rods in
the structure, while the finite element method for
large-scale systems is prone to error accumulation. In
[6], an analytical estimate of the fundamental natural
vibration frequency of a regular lattice truss is obtained
and the spectrum of all frequencies is analyzed. An
estimate of the fundamental frequency of oscillations
of a spatial regular truss with a horizontal beam in the
form of a compact formula is given in [7]. In [8, 9], the
dependence of the region of resonance-safe frequen-
cies of the spectrum of natural oscillations of a flat
regular truss with an arbitrary number of panels on the
problem parameters is investigated. An analytical

solution to the problem of the frequency of oscillations
of a spatial cantilever truss is constructed in [10]. A
formula for the natural frequency of oscillations of a
planar regular truss is obtained in [11]. The reference
book [12] contains diagrams of planar regular trusses
and formulas for calculating their deflections, forces
in characteristic rods and support displacements.

THE TRUSS SCHEME

Let us consider the scheme of a statically determi-
nate truss with parallel chords (Fig. 1). The truss has a
cross-shaped lattice and two fixed supports. The mid-
dle part, raised to a height A, contains 2n panels of
length 2a and height 2A.

The truss consists of rods and nodes. The number
of rods does not include four rods simulating two fixed
supports.

To calculate the rigidity of the structure using the
Maxwell-Mohr formula when determining the vibra-
tion frequencies by the method of cutting out nodes,
the forces in the rods are found. The scheme of the
structure is specified by the coordinates of the nodes
and the order of connecting the rods into nodes. The
origin of coordinates is located at the left support A
(Figs. 1 and 2). The coordinates are as follows:
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Fig. 1. Truss under the load, n = 3.

Fig. 2. Numbering of nodes and rods of the truss, n = 2.

=0, »=0, x,=2a, y,=0,

=h i=1.,2n+1,
Xivones = 20 =1Da, Yioope =30, 1=1,..,2n+3,
Xones = Ly —2a, 3,14 =0,

Xones = Loy Yops =0,

Xon+6 = a/ 2, Vo = 3h/ 2,

Xon1 = G5 Vont7 = Vans10 = 3h/ 2,

Xaniro = Lo _0/2-

The order of connecting the rods into the nodes of
the truss lattice is determined by special lists of node
numbers at the ends of individual rods of the structure.
The rods of the chords, for example, are specified by
unoriented lists:

Xipr = Qi+ Da, yip,

O, =[i,i +1],
(Di+2n+5 = [l+2n+5,l+2n+6],
i=1.,2n+4.

The condition of equilibrium of nodes is written in
the form of equations in projection on the coordinate
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axes. The coefficients of these equations are the direc-
tion cosines of the forces:

lx,i = (x(bi,l - xq)i.Z )/l’ ?
ly,i = (y(I),.Yl - ,Vq>,.12)/1,' ) i = 1,...,“,

where /; = l)i,- + lyz,,-. Matrix G of the system of linear
equations of equilibrium of nodes is formed as follows:

= lx,i/li’ qu)f,l»i = l)’»i/li’
_lx,i/li 5 G2<I>,.)2,i = _ly,i/li .

The system of equations of equilibrium of nodes is
written in matrix form:

GS =T, Q9]

where Tis the vector of external nodal loads, Sis the
vector of efforts in rods. The efforts are found by solv-
ing a system of equations using the inverse matrix
method in the Maple computer mathematics system.

G2<I>,-’,—l,i
Gy,

i~ Li T

DEFLECTION

The deflection of a truss with » panels in half the
span is calculated based on the vertical displacement
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of the middle node of the lower chord using the Max-
well-Mohr formula:

A, = is,-“’)SS"l,-/(EFx
i=1

where S,-(P)—the force in the rod with the number i

from the action of the load P distributed over all nodes

of the truss, S,.(l) is the force from a single force applied
to the node C with the number n+3, the displacement
of which is calculated, EF is the rigidity of the truss
rods for longitudinal forces. The analytical depen-
dence of the deflection on the number of panels is
determined by the induction method by generalizing
the sequence of solutions for trusses of different
orders. The solution of system (1) in the Maple system
gives the following sequence:

A, = P(5ld’ +11¢ + 12h3)/ (2W’EF),

A, = P(12644a° +528¢° + 41d° + 576h3)/ (72W°EF),
Ay = PQ273d’ +117¢° + 601°) [ (61’ EF),

A, = P(27276a° + 660c” +19d° + 288h3)/ (Q4W’EF),
As = P(11537a° + 249¢ + 84h3)/ (6W’EF), ...

To determine the general term of this sequence, it
was necessary to extend it to 18 terms. The general
form of the obtained solution is as follows:

A, = P(Cd’ +Cy’ +Cod’ + C4h3)/ (WEF). (2

The Maple system operators from the solution of
recurrent equations give the following coefficients:

C, = (60n" + 8(4(=1)" +25)n” + 2(32(=1)" + 215)n°
+ 6Q27(=D)" +79n +123(-1)" + 135)/36,
C = Qn’ + G = (=) m+2=1"+ 5)/2,
C; = 25+ 8n)((-1)" +1)/144,
C,=2n+4.
Dependence (2) has an asymptotic behavior that is
cubic in the number of panels:

limA, /n* = 5Rd’ [(12KEF),

n—seo

where Ry = 4(n + 2)P is the total load on the truss.

NUMERICAL DETERMINATION OF THE
NATURAL OSCILLATIONS FREQUENCIES

The truss model assumes that the truss mass is uni-
formly distributed over the nodes by concentrated
masses L. Oscillations occur along the y axis. Hori-
zontal displacements of masses are not taken into
account, the number of degrees of freedom of the mass
system is equal to the number of nodes K = 4n + 10.
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The equations of mass motion at the truss nodes are
written in matrix form:

wiY + DY =0. (3)
Here Y isthe vector of vertical displacements of the

truss nodes, Y is the acceleration vector, Dy is the

identity matrix, /5 is the stiffness matrix. Assuming
that the vibrations are harmonic with a frequency , the

substitution ¥ = —@’Y is valid. When multiplying Eq.
(3) on the left by the compliance matrix By, the prob-
lem is reduced to the problem of the eigenvalues of the

matrix By: BiY =AY, where A = 1/ (w’W) are the
eigenvalues. The compliance matrix is the inverse of
the stiffness matrix: By = 1/ Dy . The values of the ele-

ments of this matrix are calculated using the Max-
well—Mohr formula:

n . o
by =Y. SVSV1, J(EF), 4)
o=l

where S((; ' is the force in the rod with number
a =1,..,m from the action of a single vertical force
applied to node i. The number of rods includes four
rods simulating fixed hinged supports. The length of
the vertical support rods is taken to be h, and the hor-
izontal ones are taken to be a. These lengths determine
the rigidity of the supports. The rigidity EF of all truss
rods is the same. The eigenvalues of the matrix for cal-
culating the frequency spectrum can be calculated
numerically in the Maple system.

Figure 3 shows the results of calculating the first
three eigenfrequencies depending on the number of
panels in the truss. The truss dimensions are: 4 =2 m,
a = 3 m, mass at nodes L = 200 kg, elastic modulus

E=2.1x10 MPa, cross-sectional area of the rods

F =9 cm’. The distribution density of various frequen-
cies depends significantly on the number of panels.

For n = 6, for example, the two upper frequencies
,; and o, coincide, and for a truss with one panel in
half the span (n = 1), frequencies ®, and ®, coincide.

An approximate analytical expression can be found for
the first frequency.

FORMULA FOR FUNDAMENTAL
FREQUENCY

For an approximate estimate of the lower limit of
the fundamental frequency, the Dunkerley formula is
known

K
) —2
®p = ij , (5)
j=1
Vol.59 Suppl.2 2025
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Fig. 3. Oscillation frequencies depending on the number of panels.

where ®; is the partial frequency of the load at node j,
calculated from the equation of its motion:

uyj + Djyj = Os J= 1a23“"K'

The stiffness coefficient D, is the reciprocal of the
compliance, which is calculated using the Maxwell-
Mohr formula:

5,=1/D, = Zn:(sg{'))z I,/ (EF). (6)

o=l

From (5) and (6) follows the formula for the lower
limit of the first natural frequency according to
Dunkerley:

K
Wy =uY 8 =uA, (7
Jj=1

The Dunkerley method has two disadvantages: an
underestimated frequency value and the complexity of
calculating the sum in symbolic form. A simplified
version of the Dunkerley method [5] is free of these
disadvantages, in which it is proposed to replace the
sum with its approximate value calculated using the
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mean value theorem. The sum of the ordinates in (7)
is associated with the area of a curvilinear figure, for
the calculation of which the formula for the area of a
triangle is used:

K
0)52 = Mz 6j = usmax K/2 = uAmaxv
Jj=1

where 8, is the maximum value of §;. The point
whose displacement under the force applied to it has
the greatest value is selected empirically. In this prob-
lem, this is obviously the middle hinge C in the lower
chord with number n + 3. Having calculated the value
of the maximum deflection from a single force for
trusses of different orders, we obtain the sequence

Apaxi = KOG + 56 + 1) (4H°EF),

Az = K(4090" + 54¢° + d* + 91°) | B6H°EF),
Amaxs = K(65@° +9¢° + 1) (4W°EF),

Anaxs = K(1697a° +90¢” + d* + 9K°)/ G6W’EF),
Anaxs = K(233d* + 13 + 1)/ B EF), ...

Vol. 59 Suppl. 2 2025
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Fig. 4. Dependence of the first frequency of natural oscillations of the truss on the number of panels at # =2 m and # = 4 m.

Generalizing this series to an arbitrary number of
panels yields the formula

Apax = (4n +10)
X (Cd’ + G’ + Cid® + 1 [4) (W EF),
where
C =120 +6Q2=1)" +5)n°
+8Q2(=1)" + 3)n + 3(=1)" +30)/36,
C,=@n—(-1)"+5)/8,
Cy = (=" +1)/72.

From this follows the formula for calculating the
first frequency of free oscillations of the truss:

o = h EF
Wén +10)(Cd’ + Coc’ + Csd’ + 1 [4)

®)

COMPARISON OF SOLUTIONS.
NUMERICAL CALCULATION

To estimate the approximate analytical solution (8), it
is necessary to find the first frequency numerically.
The same truss parameters are adopted as in the solu-
tion of the problem of the first four frequencies in Fig. 3.
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Figure 4 shows a comparison of the analytical depen-
dence (8) of the frequency ®« on the number of panels

and the frequency m, obtained numerically. Two vari-
ants of the height 4 are considered. With an increase in
the number of panels, the natural frequency decreases
monotonically, and the results of the analytical calcu-
lation approach the numerical one. To clarify the error
of the analytical method, we introduce the relative

value g, = |0)1 - m*|/(;)1 It is evident from Fig. 5 that

the accuracy of formula (8) increases with an increase
in the number of panels. For trusses with a smaller
height, the error is slightly smaller. The parity of the
number of panels also significantly affects the accu-
racy. For example, with » = 5, the accuracy is three
times greater than with n = 6.

CONCLUSIONS

The paper considers a scheme of a planar arched
truss. A formula for the dependence of the truss
deflection under the action of a distributed nodal load
is constructed and analyzed. The first four natural fre-
quencies of oscillations are calculated numerically
depending on the number of panels. An approximate
analytical expression is obtained for the first frequency
2025
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Fig. 5. Dependences of the error of the analytical solution on the number of panels.

using the induction method. It is shown that the accu-
racy of this solution increases with an increase in the
number of panels. The proposed algorithm for con-
structing an analytical solution can be used to calcu-
late the fundamental frequency of regular statically
determinate trusses. One of the advantages of an ana-
lytical solution, in addition to its obvious simplicity, is
that while the error of a numerical solution regularly
increases with an increase in the number of panels, it
decreases for an analytical solution. The resulting for-
mula can serve as a simple estimate of a numerical
solution obtained for a more accurate model of the
same truss, for example, taking into account the
masses of the rods.
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