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Abstract. In this work, we investigate the static deformations of the spatial model of a 
statically determined truss of a power line support. The tetrahedral truss has a pyramidal 
extension at the base and a cross-shaped lattice. Brackets for attaching the supporting cables 
are located at the top of the truss. A spherical support hinge, a cylindrical one, and two vertical 
posts are located at the four corners of the structure base.  We consider two types of loads: 
wind, and force. Horizontal forces applied to the nodes of one face model the wind load. The 
horizontal force is applied to the top of the structure. We aim to derive formulas for the 
dependence of the deflections of the truss on the number of its panels. We use the Maxwell-
Mohr formula to determine the deflection. We find the efforts in the structural elements and the 
reactions of the supports from the general system of linear equations of equilibrium of all 
nodes of the truss. A series of solutions for trusses with different numbers of panels are 
summarized by the induction method in the Maple computer mathematics system. The sought 
formulas for the dependence of the vertical deflection of the console and the displacement of 
the top of the mast on the number of panels were obtained in the form of polynomials in the 
number of panels of degree not higher than the fourth. Some asymptotics of solutions is found 
in the work. 

1.   Introduction 
Typically, trusses are used in the construction of transmission towers. Truss engineering calculations 
are usually performed numerically in various specialized or custom engineering packages. The core of 
these programs is based on the finite element method [1–6]. An analytical approach can be used to 
evaluate such solutions and to pre-calculate the designed structures. In this case, the value of the 
analytical solution is the greater, the more independent parameters were taken into account in the 
solution (dimensions, material constants, numerical value of the load). For regular structures that have 
some kind of periodic structure, the order of regularity can also be taken into account, for example, the 
number of panels. This allows the engineer to select the optimal variant of the designed structure in an 
analytical form. One of the methods for solving this problem is the induction method [7]. A number of 
solutions for the statics of flat arches were obtained by this method [8,9]. Researchers are aware of 
some solutions for planar lattice trusses [10–12] and space trusses [13]. In an analytical form, using 
the Dunkerley method [14], the lower boundaries of the first natural frequencies of vibrations of 
regular hinged-bar structures were obtained [15,16]. Some questions of the existence and calculation 
of statically definable plane and spatial regular trusses were studied in [17–19]. 

2.  Solution method. Truss scheme  
 



 
 
 
 
 
 

The support structure consists of two parts and has a cruciform lattice (figure 1, 2). In the lower 
pyramidal part of height h, the slope of the faces is determined by the ratio of the horizontal 
dimensions 2a b c  , c , and the vertical dimension h. The upper part with parallel vertical ribs 
contains n-1 identical belts and belts with a height 1h for attaching consoles of length r. 

Each console consists of six rods. There are a total of members in the truss 12 39m n  , including 
seven members that simulate the supports. The supports used a spherical hinge A, a cylindrical hinge 
B, and two vertical posts C and D. We are considering two loading options. The first option is a 
horizontal force applied to the top of the structure, the second is a lateral horizontal force evenly 
distributed over the nodes of one face of the truss, simulating a wind load. We set the task to 
determine in an analytical form the deflection of the cantilever and the horizontal displacement of the 
top. 

 
 

Figure 1. Wind load, truss n = 4 Figure 2. Dimensions, truss n = 5 
 

We use a program written in the language of computer mathematics Maple to calculate the forces 
in the rods [7]. Nodes and rods are numbered. The cycles specify the coordinates of the nodes and the 
order of connecting the bars in the hinges. To do this, we use the method used for encoding graphs in 
discrete mathematics. Each bar is associated with a list of node numbers at its ends. We use this data 
to calculate the direction cosines of the forces connected at the nodes. The matrix G  of the system of 
equations for the equilibrium of nodes consists of these quantities. The loads on the nodes are entered 
into the right side of the matrix equation GS T . Here S  is the vector of values of all forces in the 
rods, including seven reactions of the supports. In the matrix, each node has three rows. The system of 
equations is solved by Maple methods in symbolic form. The Maxwell – Mohr formula is used to 
determine the displacement of the nodes of the truss 
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The standard notation is used here: 1S  — the force in the element numbered   from the action of 
a unit force applied to the node in the direction of the desired displacement, усилие in the element 

numbered, PS  the force from the action of a given load, E — modulus of elasticity of the rod material, 

F - cross-sectional area of bars, l  — rod lengths. It is assumed here that the stiffnesses of the rods are 
the same. The summation is carried out only over the deformable truss rods, therefore, the efforts of 
the seven support rods are not included in the sum. 

3.   Displacement of a vertex under the action of a horizontal force 
We will consider the horizontal force P as the load. This force is applied to the top of the structure in 
the direction of the y-axis. There will be only one nonzero element in the load vector on the right side 
of the system of equations for the equilibrium of nodes  

3 1 , 4( 1) 5.iT P i n       (2) 

A preliminary calculation of trusses with a different number of panels n shows that the solution for 
the deflection calculated according to formula (1) has the same form: 

3 3 3 3 3 3 2
1 2 3 4 5 6( ) / ( ).P C a C g C f C h C q C e EFa        (3) 

We have introduced the following designations for the dimensions of the braces 
2 2 2 2 2 2

2 2 2 2 2 2

50 64 , 2 16 , 10 16 ,

2 64 , 4 , 4 .

r a h f a h g a h

p a h q a h e a h

     

     
 

The coefficients in (3) 1 7,...,C C  depend only on the number of panels in the truss n. These 
dependencies are determined by the induction method. We have the following sequence of solutions:  

3 3 3 3 3 2
1

3 3 3 3 3 3 2
2

3 3 3 3 3 3 2
3

3 3 3 3
4

(3104 552 73 1096 552 ) / (2048 ),

(3104 9024 1128 129 23240 1128 / (2048 )

(9760 31 )360 1960 217 272584 1960 / (2048 )

(9760 73152 3048 337
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,
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We wrote out the first four results, but to identify the regularity of the formation of coefficients, we 
needed to solve the problem for ten trusses with a sequentially increasing number of panels. We will 
notice that the speed of symbolic transformations in the Maple system is significantly higher than the 
speed of numerical calculation. The following dependencies were found by the Maple system 
operators from the genfunc specialized package: 
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We have found and solved recurrent equations to obtain these functions. These functions satisfy 
recurrent equations. The Maple rsolve operator gives solutions based on the initial values of the 
coefficients. 

Similarly, in the case of a wind load acting along the y-axis on all nodes of one face of the truss 
(Fig. 2), we have the coefficients: 
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Here, the lengths of the sequences of solutions required to find their common terms were greater 
than for the case of one force applied to the vertex. 

In figure 3 ( 1h h , / ( 3.5)h H n  ) the curves of dependence (3) with coefficients (4) for 

dimensionless relative deflection 0' / ( )EF P H    were presented. Here is the notation for the total 

force per mast: 0 (2 3)P n P  .  

 

Figure 3. Dependence of the displacement of the top on the number of panels at a uniform lateral 
load, 20mH   

We can reveal the cubic character of the deflection growth 3lim '/ / (4 )
n

n a H


   by Maple 

methods. The uneven growth of the deflection with an increase in the number of panels is explained by 

the presence of terms with a multiplier ( 1)n  in the solution. The intersections of the curves plotted 
for different base sizes show the ambiguity in the choice of the size a at a constant height and load. 
The offset for different values of a and the same number n of panels  may turn out to be the same. If 
we do not consider here the problem of overturning the structure with an insufficiently wide base of 
the truss, then the solution with a lower a will be optimal from the point of view of saving material.  

4.  Console deflection due to lateral loads 
The trusses are tilted under the action of a horizontal load. We calculate the vertical displacement of 
the end of the leeward console using the same formula (1). The solution to the problem of 
displacement of the console is similar to the solution (3), the solution differs in the denominator, and 
has the form: 

3 3 3 3 3 3
1 2 3 4 5 6( ) / ( ).P C a C g C f C h C q C e EFah        (5) 

The coefficients in this expression are obtained by the induction method and have the form 
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In figure 4, we show the change in the relative displacement versus the number of panels for 
different base sizes a. As in the previous problem, the growth of the quantity is cubic. This shows the 

following limit: 3 2 2lim '/ 3 / (16 )
n

n a H


  , / ( 3.5)h H n   A characteristic feature of the obtained 

solution is its non-monotonicity. Changing the number of panels at a total constant height by just one 
can see noticeably change the deflection. As in the previous solution, the curves have points of 
intersection with each other. 

 

Figure 4. Dependence of the cantilever deflection on the number of panels under the action of a 
wind load, 20mH    

Analytical solutions for the calculation of building structures can be used in solving optimization 
problems [5,20–22]. The presence of a parameter in the solution that is responsible for the number of 
panels significantly expands the class of structures under study and significantly accelerates the search 
for the optimal solution.  

5.  Conclusion  
The main results of the work are as follows. 
1. We have considered and studied a mathematical model of a statically determinate spatial truss of a 
transmission line support. 
2. Formulas for calculating the deflection of the console and the displacement of the top of the 
structure under the influence of distributed wind and concentrated loads are derived. 
3. We have found cubic asymptotics of solutions. 
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