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Jlis BBIBOJIa aHATTMTUIECKOM OICHKH HIDKHEH 9acTOTHI COOCTBEHHBIX KOJCOAHHH IUTOCKOI CTATHIECKH OIIpe-
JIETUMO# (hepMBI PacCMOTPEHA HHEPIMOHHAS MOJIENb (DepMbI C MacCaMH, COCPEIOTOUCHHBIMHU B y3J1ax €€ HWKHETO I10-
sica. CMeIeH s TPy30B MPEAINOaraloTcsi BEpTUKAIbHBIMU. [Iporu0el (hepmbl Mo AEHCTBUEM COCPEAOTOUSHHBIX CHII,
MIPWJIOKEHHBIX K y3JIaM ¢ MaccaMH B pacCYuTaHHbIe 1o Gopmyiie MakcBemia — Mopa, naroT 3HadeHns K03 duimenTor
MaTpHLbl mojaTiauBocTd (epmel. s onenku mo merony JloHkepies TpeOYIOTCS TOJNBKO AMArOHANBHBIE HJIEMEHTHI
Marpuipl. Mickomast oieHo4Has (popMyJia MmojiydeHa METOJJOM HHIYKIHH PacdeToOM HIDKHEH I'PaHuIbl TIepBOI 4aCTOTHI
IUTA OTACTBHBEIX (pepM C TOCIIeI0BaTEIFHO YBEINIMBAONINMCS YHUCIIOM TTaHeIeld. JTO HaeT HAWTH 3aBUCUMOCTH JacTo-
ThI KOJIeOaHUH GepMbl HE TOJIBKO OT €€ pa3MepoB, HO U OT uucia naHenei. KoadduuneHtsr Gpopmynsl onpeaenstorcs
U3 pelIeHUs] PEeKYPPEHTHBIX YPaBHEHUH IS 3JIEMEHTOB IOCIIEI0BATENbHOCTEH, OTy4YEeHHBIX U3 YaCTHBIX pelieHui. B
pacueTax W aHaJM3e UCIIOIH30BaHA CHCTEMa KOMIIBIOTePHOH MateMaTuku Maple.

KiroueBble ciioBa: depma, mepBas 4yacToTa KoyieOaHuWi, oneHka JJoHKepIies, HHAYKLIUS, aHATUTHYSCKOe pe-
menue,Maple.

The natural oscillation frequencies of the trusses required to assess the dynamics of the
structure are calculated, as a rule, numerically [1-6]. In most cases, these solutions are used in opti-
mization problems [7-9]. At the same time, a common and quite acceptable approximation is the
truss model with concentrated masses at the nodes [10,11]. However, as practice shows [11-16], in
such a formulation it is possible to obtain an analytical solution. The most demanded in practical
calculations is the first, the lowest frequency of oscillations. The Donkerley method [17] makes it
possible to derive a fairly simple formula for the lower bound of this value.

Consider a truss with a triangular lattice consisting of n identical panels (Fig. 1). Each panel in-

cludes two bars of lower chord of length a, two multidirectional struts of length ¢ =+/a?+h? and struts
of height h. In the truss the m =3n +5bars, including three bars corresponding to the supports.

Rice. 1. Trussat n=6. In the nodes of the lower chord are the masses M, , kK =1,...,2n—1
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The mass of the truss is evenly distributed over the nodes of the lower chord of the truss:
m,=m, k=1,..,2n-1. The estimation formula of Dunkerley gives a lower bound of the first natu-

ral frequency @ of the mass in the node
2n-1
@’ =111l o} . (1)

k=1
Here is a notation e, for the oscillation frequency of a single massm, , at the node k + 1 of

the lower chord, in the absence of all other masses. Numbering of knots is conducted from the left
support. The differential equation of mass m, =m oscillations of the second order has the form

my, +d, .y, =0,

where y, — vertical mass displacement, ¥, — acceleration, d, ,— stiffness coefficient of mass with
number k, n— number of panels in the truss. It follows that the frequency of oscillations of the load
wy =,/dy , /M. The stiffness coefficient can be calculated through the flexibility coefficient by the
Maxwell-Mohr formula:

5 o—1d, =S Sikh
K, = K, = _—
" " 4 ER

Here it is indicated S;  — the forces in the bar numberedi=1,...,m-3 from the action of a
single vertical force applied to the node in which the load is located with the number k , I,— the

length of the bar. It is accepted that the stiffness of all bars is the same: EF, = EF . Three rigid sup-

port bars are not included.

The forces in the bars of the truss are determined by the program [11] in symbolic form. In
the program by analogy with [11-17] coordinates of nodes and the scheme of connection of bars in
nodes are entered. The origin is located in the left support:

x;=a(@i—1), y;=0,i=1..,2n+1,
Xisvonsa =22 —1), Viionyg=h, 1=1..,n+1

The lattice of the truss and its chord is formed by vectors N;, i =1,...,m containing the num-
bers of the ends of the bars. The upper and lower chords are defined as follows:

N =[i,i+1], i=1..,2n,

Ni,,n =[i+2n+Li+2n+2],i=1..,n

The grid (struts and braces) correspond to the vectors
Ni+3l’]+:|. = [2| _1’ I + 2n +1]1 I :1! LS n +1|
N, aneg =[20,i+20+1], Ni,g,y =[2i,i+20+2], i=1,...,n,

The system of equilibrium equations of nodes in projections on the axis is entered into the
program written in matrix form. The matrix of the system consists of the guiding cosines of the
forces. Odd rows of the matrix consist of projections of unit vectors of forces on the horizontal axis,
even — on the vertical. Depending on the considered node with mass, to which a single force is ap-
plied, the distribution of forces on the bars is markedly different depending on the parity of the load
number (Fig. 2,3). Compressionbars are highlighted in black, tension — in red. The thickness of the
lines is proportional to the force.
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Fig. 2. The distribution of forces in the bars in fractions of 1 when considering the mass with an even num-
bern=4, k=2, a=3m, h=4m
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Fig.3. The distribution of stresses in the bars when considering odd weight
n=4, k=3, a=3m, h=4 m

Solving individual problems for trusses with a consistently increasing number of panels n=1, 2,
3,..., gives an expression of the flexibility coefficient from the action of a unit force in a node with
mass k of the form

5 — Cl,k,na3 _'_Cz,k,nc3 + C3,k,nh3
o n*h?EF ’
To obtain the dependence of the coefficients in this expression on the number of panels n
and the number of nodes with massesk, the induction method is used. First, with a fixed number of
nodes with masses coefficients are obtained for a different number of panels:

_a*+c’+h’ _14a°+6c’+5h° . 55a’+15¢° +13h°
Y 2n%EF L2 8h’EF 13 18h’EF '
140a® + 28¢® + 25h®
S, = -
32h’EF

For the coefficient C,, ,using the operator rgf_findrecur of the Maple system we obtain a
recurrent equation for the common term

Cl,l,n = 4Cl,l,nfl - 6Cl,l,n72 + 4Cl,1,n73 - C1,1,n74 '
The solution of this equation can be obtained using the rsolve operator:
Ci1n =4n°/3-n°+n/6.

Similarly, for k=1, we find the coefficients



CZ,l,n = n2 -Nn / 2,

Cyn=n°-n+1/2.
When k=2 we have
Cp1, =16n°/3-10n" +14n/3,
Cpip =2n° =20,

Cyin=2n°—2n+2,

To obtain a generalization of the number of massesk will be required to carry out the calcu-
lations for k=1,2,..8. Generalizing these solutions using the same operators rgf_findrecurand
rsolve, we obtain the final formula for the coefficients

Coxn = Nk(2k? —4nk —1)(k —2n) /6,
Coxn=kn(2n-k)/2,
Capn = ((-D)* +3)n? —2nk +k?)/ 2.

Thus, the dependence of the flexibilitycoefficient on the number of panels and number of
nodes with mass is obtained. For even n = 2j, the expression has the form

Scn = (218> +2,0° + 20°) | (Bn*h?EF),
where
2, =2 jk(4]-k)1+8jk —2k?),
2, =6jk(4]-k),
z,=3(k?—4jk+4j3(-)* +12j?).
Summing, according to @ =1/(mdy ) (1), we obtain the desired lower estimate of the first
frequency of natural oscillations.

@, =6h\/5jEF/(m( 2j(512j* +80j%-7)a® +30(16 j* —1) jc* +15(1—-24 j +56 j*)h®)) .
A similar but more cumbersome expression holds for odd n's.

Graphs of the dependence of the oscillation frequency on the span length show that at a
fixed span length, an increase in the number of panels leads to a decrease in frequency (Fig. 4, 5).
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Fig. 4. Oscillation frequency depending on span length and number of panels at h=4m,
a=L/n=L/(2j), EF =2-10°kN, m=150kg
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Fig. 5. Oscillation frequency depending on span length and number of panels at h=4m,
a=L/n=L/(2j), L=50m, EF =2-10°kN

In conclusion, it is stated that in comparison with solutions with one natural parameter speci-
fying the order of the regular structure, to which we apply the induction method when deriving the
general solution [18], in problems of vibration of a system with a discretely distributed mass (here -
at the nodes of the lower chord) at least two natural parameters arise - the number of panels and the
node number with mass. This greatly complicates the task. For example, if 10 separate solutions are
required to obtain a sequence of numbers long enough to reveal its common term, then in a two-
parameter problem this number increases to about 100. It should be borne in mind that symbolic
transformations in computer mathematics systems require an order of magnitude more time than
numerical transformations. Therefore, it is not always possible to construct an analytical depend-
ence of dynamic characteristics on the order of a regular system.
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ANALYTICAL EXPRESSIONS OF FREQUENCIES OF SMALL OSCILLATIONS OF A
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To derive an analytical estimate of the lower eigenfrequency of a plane statically determinate truss, an inertial
model of a truss with masses concentrated in the nodes of its lower chordis considered. Displacements of the nodes with
masses are assumed to be vertical. The deflections of the truss under the action of concentrated forces applied to the
nodes with masses and calculated by the Maxwell-Mohr formula give the values of the coefficients of the truss flexibil-
ity matrix. For the evaluation according to the method of Dunkerley only requires the diagonal elements of the matrix.
The required estimate formula is obtained by induction calculation of the lower bound of the first frequency for individ-
ual trusses with a consistently increasing number of panels. This makes it possible to find the dependence of the fre-
quency of oscillations of the truss not only on its size, but also on the number of panels. The coefficients of the formula
are determined from the solution of recurrent equations for elements of sequences obtained from partial solutions. Ma-
ple computer mathematics system is used in calculations and analysis.

Keywords: truss, the first frequency of oscillation, assessment of Dunkerley, induction, analytical solution,
Maple
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