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An analytical estimation of the fundamental frequency of oscillations of a planar statically determinate model
of a manipulator with an arbitrary number of panels in the console part and rack is derived by the method of induction
using two parameters with the involvement of operators of the Maple computer mathematics system. The mass is
allocated to the nodes of the lower belt of the console. To output the formula, the operators of the specialized
LinearAlgebra and genfunc packages are used. The coefficients in the desired formula are found as solutions of
recurrent equations composed according to a series of solutions for trusses with a consistently increasing number of
panels. Compared to similar solutions for planar regular trusses that use Dunkerley estimation, the solution is
distinguished by its high accuracy. Numerical analysis of the truss oscillation spectrum, taking into account many
degrees of freedom, shows that the error of the obtained analytical estimate does not exceed 2% on average .
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Introduction

The calculation of manipulators designed for high-speed work involves the analysis of
natural oscillation 'frequencies. One of the most significant dynamic characteristics of a structure is
its first (lowest) natural frequency. If the structure contains a large number of elements (rods), the
complete calculation of a system with many degrees of freedom (based on the number of nodes
endowed with masses) is a complex numerical problem. The development of modern systems of
symbolic mathematics makes it possible to use analytical methods along with numerical methods.
The value of such solutions is determined by both accuracy and versatility. An analytical solution in
the form of a formula obtained for a single structure with parametrically specified dimensions and
loads has significantly less value than a solution that takes into account the number of elements. For
regular structures with periodically repeated elements, it is possible to take into account their
number in the final calculation formula using the induction method [1]. In this paper, we consider a
planar, statically determinate model of the truss of a cantilever manipulator with a mass distributed
over the nodes of the lower belt of the console. The solution is based on the method used earlier in
the problems of analyzing the static deflection of trusses [1]. The frequencies of beam truss
oscillation were studied analytically in [2—10].

Solution

The truss post (Fig. 1) with two supports has m cross-shaped panels in height. The console
contains n panels with a triangular grid. In total, there are n =4(m+n)+6 rods in the truss,
counting three rods that model movable and fixed supports. Ignoring the horizontal displacements,

we consider only the vertical oscillations of the loads in the nodes of the structure. The number of
degrees of freedom of such a model is equal to the number of loads N = n. The truss diagram has a
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regular type with two parameters n and m. The stress state of the truss rods can be calculated
analytically using the program in the Maple system [1, 4-7] . The program includes a method for
cutting out nodes.
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i Fig. 1. The scheme of the manipulator, m=2, n=>5
The equations of mass oscillations have the form:
J,Y+D,Y=0, (1)
where D, is the stiffness matrix, ¥ =[y,,1,,...yy]" is the vector of vertical displacements of
loads. If all the masses are equal M, =M, =..=M =M , then J,, =M1, — is the diagonal inertia

matrix, I,, — the unit matrix, Y — the acceleration vector of nodes with masses. The inverse of the
stiffness matrix D, is the matrix B, , whose elements are calculated using the Mohr's integral:
b, =>.8"S"l | (EF). )
k=1
Here, S\ is the force in the rod k& from the action of a single vertical force at the node i, /,

is the length of the rod £, E is the elastic modulus of the rod material, ' is the cross-sectional area of
the rods. The stiffness of the rods is assumed to be the same. The three support rods are not
deformed. The forces in these rods are not included in the sum (2).

The approximate solution according to the Dunkerley method [8] for the lower estimate of

the first oscillation frequency ®,, is expressed in terms of the oscillation frequencies of individual
loads in the marked nodes:

N
oy =Y o, 3)

k=1
where ®, is the partial oscillation frequency of the mass M located in the console node on the lower
belt. In the case of oscillations of one mass, equation (1) has the form: M y, +d,y, =0, where d,
is the coefficient of rigidity, y, is the displacement of the mass, and J, is the acceleration. Hence,

the oscillation frequency of a single load (partial frequency) has the form: @, =./d, /M . The

n=3, 2
stiffness coefficient is calculated using the Mohr integral: 6, =1/d, = z (S}k)) l;/(EF). Here it

J=1

33



is indicated: 5}")— the forces in the rod with the number j from the action of a single vertical force

applied to the node where the mass with the number £ is located . From (3) follows:

N
oy =MY 8, =MA,. (4)
k=1
General view of the solution for the A, coefficient at m = 3:
A, =(C,,a’ +C,,c*+C,,h*)/ (W*EF) (5)
Solving the problem sequentially forn =1, 2, 3, ..., we get:
A, =2(151° +6a’ +2¢°) | (WEF), A, =4Q27h* +20a’ +4c’) / (h*EF),

A, =2(129%° +140a° +20c* ) /(W EF ), A, =8(63h" +90a’ +10c* )/ (W’ EF ),
As =10(87h° +90a’ +14c*) /(W EF), A, =4(345h"+7284"+56¢" )/ (W’EF),...
Using the rgf findrecur operator from the special genfunc package of the Maple system,
you can get recurrent equations for sequence elements. For the coefficient C,, we have a fifth-order
linear equation: C,, =5C,, ,-10C,, , +10C,, ;-5C,, ,+C,, .
The rsolve operator gives a solution to this equation:

C,, =(4n* +14n’ +14n* +4n) /3. (6)
Other coefficients are found in the same way:
C,, =4n* +12n* +14n, C,, = (20> +4n> +4n) /3. (7)

To generalize the solution to an arbitrary number, you need to repeat the entire solution
sequentially for different m = 1, 2, .. Calculations show that only the coefficient C, depends on the

number of panels m vertically, and then linearly. Thus, we have the values of the coefficients in the
general case

C, =2n2n+1)(n+2)(n+1)/3, C, =2m(n+1)(2n*> +4n+3)/3, C, =2n(n+1)(n+2)/3.
Hence, taking into account (4) and (5), we obtain the final formula for the lower bound of
the first natural frequency of oscillation of the truss:

\/ 3EF
®,=h — 5 - (8)
2M (n+1)(n(n+2)((2n+1)a’ +c’)+m(2n" +4n+3)h’)

Analysis of the obtained results

The accuracy of analytical solutions (4) factors (6, 7) can be estimated from a comparison
with the solution of the problem of oscillation of a system with many degrees of freedom, N,

obtained numerically. To find the eigenvalues of a matrix B,,, we use the Eigenvalues operator
from the LinearAlgebra package of the Maple system. The graph (Fig. 2) shows the curves of the
dependence of the first frequency ®, , obtained numerically and ®,, according to the formula (4).
The curves are almost identical. Accepted: EF =1000H , M = 100kg, a = 3m, 7 = 4m. Accuracy
(relative error ) ¢ =(o,,, —®, ) /®,  depends on the number of panels (fig. 3).

The resulting formula can be used to estimate the frequency of oscillation of the truss with a
very large number of rods. As you know, the accuracy of the numerical calculation decreases with

an increase in the number of structural elements, while the analytical solution has an almost
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constant and high accuracy. This can be seen from the curve in Figure 3, which goes to the
horizontal asymptote.
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Fig. 2. Frequency dependence on the number of panels
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Fig. 3. The error of Dunkerley's estimation depending on number of panels

The error of the solution varies depending on the number of panels from 1%, for n = 2, to
1.3% for a large number of panels. For comparison, we note that in [11] in the problem of
vibrations of the nodes of a beam truss with a triangular lattice and with two panels, the solution
according to the Dunkerley method gives an error of 29%.

The oscillation frequency depends non-linearly on the height of the panel # (Fig. 4). The
graphs are constructed according to the analytical solution (8) at m =7 and the same values of mass
and stiffness as the previous graphs. As the number of n panels in the console increases, the
maximum frequency value shifts to the right on the graph.
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Fig. 4. Dependence of the oscillation frequency on the height of the truss

Another method for obtaining an analytical estimate of the lowest frequency is based on the
Rayleigh method [11]. This method gives even greater accuracy and estimates the frequency from
above, but the resulting formula is too cumbersome.

Conclusion

The method of estimating the first frequency by Dunkerley is known, but it is rarely used in
practice, since its accuracy is low and in the case of complex systems with many degrees of
freedom it involves numerical counting. The development of computer mathematics systems and
the method of induction used in the derivation of analytical dependencies for regular systems
allowed us to obtain a number of analytical solutions, in particular for the problem of the truss
oscillation. The proposed solution turned out to have high accuracy and a very compact shape. The
authors still do not know what caused such a high accuracy — whether the choice of the design
model, the neglect of horizontal oscillations, or something else. In any case, the formula is quite
convenient for use in practice, and the proposed algorithm can be used in solving other similar
problems for statically determinate systems.

The investigation was carried out within the framework of the project “Dynamics of light
rod structures of manipulators” with the support of a grant from NRU "MPEI" for implementation
of scientific research programs "Energy", "Electronics, Radio Engineering and IT", and “Industry
4.0, Technologies for Industry and Robotics in 2020-2022.
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MeroqoM HMHAYKIMH 1O JBYM IapaMerpaM C MPHUBJICYEHHEM OIEPaTOPOB CUCTEMBI KOMIILIOTEPHON
MaTeMaTukd Maple BbIBeJeHa aHANUTHYECKas OIEHKa OCHOBHOM YaCTOTHI KOJIEOaHMH IUIOCKOW CTaTH4ecKH
OMpeJIeIMMON MOJIEId MaHUIYJSATOpa C MPOU3BOJIBHBIM YHCJIOM MaHENed B KOHCONW W CToWKe. Maccoil HajeleHbl
y3JI6l HIDKHETO Tosica KoHconu. J{i1st BbIBoAa (OpMyIBI HCIIONB3YIOTCST ONEPAaTOPhl CIEHATHM3HUPOBAHHBIX ITaKETOB
LinearAlgebra u genfunc. Koaduuments B uckomoid popMyse HaXomsuTCs KaK pelieHus peKyppeHTHBIX YpaBHEHHH,
COCTaBJICHHBIX II0 CEPHU pemeHWi aus (epM C IOCIeAOoBaTEIbHO YBEIMYHBAIOIIMMCS 4YuciioM maHened. [lo
CPaBHEHUIO C aHAJIOTMYHBIMU 3a/la4aMy JUIsl TUIOCKHX PeryJsipHbIX (epM, I/ie UCHONIb3YeTcs oneHKa 1o JloHkepiieto,
MIOJTYYEHHOE PEICHHE OTIMYAeTCsl BBICOKOW TOYHOCTHIO. UMCIIEHHBIN aHanM3 cHeKTpa KoieOaHWH (epMBbl C y4eToM
MHOTHX CTelleHeHd CBOOOIbI IMOKAa3hIBAET, YTO IIOTPEIIHOCTH IOJYYEHHOH aHAINTHYECKOW OLEHKH B CPEIHEM He
npeBbImaer 2% .
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