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Abstract – An algorithm for redistribution of flows in an 
oriented network is proposed, the maximum flow of which is 
sought by the Push-Relabel method in the Maple system of 
computer mathematics. At each stage of optimization, the most 
effective options are identified, the combination of which gives 
the next generation of genes. It is shown that highly ramified 
networks are most sensitive to the distribution of the capacity of 
individual branches. For example, the maximum flows in 
networks with two and three parallel branches of the same 
bandwidth are compared. It is shown which parameters of the 
algorithm have the greatest influence on the result. 

Keywords— heat networks, flows,  graph theory, Maple, 
genetic algorithm. 

I. INTRODUCTION  

Optimization of the throughput capacity of heating 
networks is of great importance for their efficient and 
economical operation. The greatest effect of such 
optimization is achieved when the total network capacity is 
limited. In the present study, an algorithm for network 
optimization is proposed based on the Ford-Fulkerson 
algorithm for determining the throughput of the entire 
network and a genetic algorithm for distributing the 
throughput of its branches. The algorithm is implemented in 
the Maple [1] computer mathematics system. Similar 
algorithms with different application aspects have been 
proposed earlier.  

Article [2] implements two approaches to the genetic 
algorithm, distinguishing genetic crossover operator: 
segmented genetic algorithm (SGA) and an equally efficient 
Basic Genetic Algorithm (BGA). The authors of the article 
[3] attempt to optimize the multilayer neural network of the 
perceptron using several optimization methods to predict the 
heating and cooling of energy-efficient buildings. Article [4] 
describes a method combining a lumped-capacitance 
thermal network model that is effective for accelerating 
thermal design optimization of a transient heating circuit 
board layout and Bayesian optimization. For a limited set of 
buildings, Chi А.,  Xu Y. [5] proposed a digital gene map 
characterized by lines of binary code. Based on the digital 
gene map, building elements were parameterized to create 
dynamic variables to facilitate a multipurpose genetic 
algorithm. With the help of a multipurpose genetic 
algorithm and a special data statistics tool, a “Pareto front” 
solution was obtained in the work to optimize the decision-
making process when designing a series of buildings. An 
artificial neural network combined with a genetic algorithm 
is used to optimize the engine thermal strategy [6]. 

II.  METHOD   

The input of the algorithm is a directed graph of the 
network with given bandwidths of the arcs. These data are 
used to determine the integrated bandwidth of the network. 

A significant simplification of the solution was achieved due 
to the presence of a special MaxFlow operator from the 
GraphTheory package of the Maple system. The operator 
uses the Push-Relabel (Push-Preflow) algorithm developed 
by Goldberg [7-9]. This is an algorithm similar to the well-
known Ford - Fulkerson algorithm [10]. The redistribution 
of the capacities of the edges (we will conditionally call 
them diameters) leads to a change in the total flow in the 
network. Redistribution of diameters in the algorithm is 
performed by decreasing the diameter of one of the arcs and 
increasing the diameter of the other arc by the same amount. 
The arc numbers are chosen randomly. The efficiency of the 
algorithm significantly depends on the quality of the random 
number generator. It uses the rand ( ) generator of the Maple 
system. The numbers of arcs with altered diameters form the 
chromosome of the next generation of genetic evolution. 
The competition of chromosomes for selection in the 
creation of the next generation is done simply by choosing 
the options with the highest flux. At the initial stage, 
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of the second in quality chromosome of the first generation. 
The second chromosome is formed according to the same 
principle, but already according to the data of the 
chromosomes and the third quality chromosome from the 
previous generation. The last two chromosomes of the next 
generation are obtained randomly and give the effect of 
mutation, which is necessary in such algorithms to eliminate 
the looping effect after enumerating a finite number of 
combinations.  

III. EXAMPLE   

Consider a weighted network of order N = 18 and size M = 
32 (Fig. 1). The directed weighted graph is specified by the 
operator G: = Digraph (A, weighted). Here is a fragment of 
a program that implements a genetic algorithm in the 
language of symbolic mathematics Maple. The problem has 
a parameter N that sets the order of the graph. Let's choose a 
network with two parallel branches 2-9 and 10-17 and arcs 
connecting these branches. It is convenient to set the 
weights of arcs in cycles. The weight matrix A0 of arcs 
(nominal diameters) is taken in the form 



k:=9:  N:=2*k:  
for i to k-1 do  
   A0[i,i+1]:=2:  
od: 
for i to k-1 do  
   A0[i+k,i+k+1]:=2+i:  
od: 
for i to k-2 do  
    A0[i+k,i+2]:=3:  
    A0[i+1,i+k+1]:=1+i: 
 od: 
A0[1,k+1]:=4+i: A0[k, N]:=21-i: 
 

 

Fig. 1. Planar heat network 1, N=18, M=32  

The weight matrix is asymmetric, since the graph is 
oriented. Whether the constructed graph is a network is 
determined by the operator IsNetwork (G). The same 
operator calculates the numbers of the drain and source 
vertices in the network. In this case, for any N, the source of 
the network is vertex 1, and the sink is vertex N. The 
algorithm also allows optimizing networks with several 
sources or sinks. To do this, it is necessary to introduce, for 
example, a fictitious source connected to real sources by 
arcs, the throughput of which is many times overstated and 
exceeds the possible flows from real sources. 

 The graph of the network under consideration is regular, 
which makes it possible to specify its structure by changing 
only the parameter N. 

The DrawNetwork (G) operator is used to display the 
graph. Note that the ability to display directed graphs in the 
Maple system appeared only in its latest versions.  

The first chromosome of the initial generation is formed by 
changing the weights of randomly selected J pairs of arcs. In 
one arc, the weight decreases by the step value, in the other, 
it increases by the same amount. Only real arcs are 
considered, that is, arcs with non-zero weight: 
step:=0.1: 
for m to J do 
  k0:=0:  
  k1:=nomRand(); k2:= nomRand();  
  for u to N do 
    for v to N do if (A0[u,v]<>0) then  
    k0:=k0+1:  if k0=k1 then A1[u,v]:=A0[u,v]+step: fi:  
                       if k0=k2 then A1[u,v]:=A0[u,v]-step: fi: 
    fi: 
    end:#v 
   end:#u 
   end:#m 
 

The random number generator nomRand: = rand (1 .. ke) 
is used here, where ke: = nops (Edges (G)) is the number of 
graph edges or the number of nonzero elements of the 
matrix A0. The J-number determines the number of changed 
balance pairs. In fact, this is the length of the chromosome. 
Considering that the numbers k1 and k2 are random and 
may coincide, the length of the chromosome can be of 
different lengths. Here J = 25 is taken as an example. The 
flow value calculated by the Ford - Faklerson algorithm is 
given by the MaxFlow (G, 1, N) operator built into Maple, 
in which the graph G is indicated, the source is vertex 1, and 
the sink is vertex N. 

Here is the result of a genetic algorithm with three 
selected chromosomes, formed over 45 generations of 
chromosomes (Fig. 2) 

 

Fig. 2.  The value of the stream through the network for 45 generations of 
the algorithm 



As expected, the curve of the dependence of the total 
flow through the network on the number of iterations 
(generations of chromosomes) has a chaotic character. Low-
amplitude fluctuations alternate with significant jumps, 
leading the network to an optimal structure. On the one hand, 
this is due to the presence of a random number operator in 
the algorithm, on the other hand, such abrupt results are 
inherent in genetic algorithms. Several numerical 
experiments carried out with the constructed algorithm have 
shown that there are several constants in the algorithm that 
affect the convergence of the result. First of all, this is the 
step of changing the weights step. For this example, 
changing the step from 0.09 to 1.5 changes the final flow 
value by 10-20%. Another parameter is the length of the 
chromosome. Least of all the result depends on the number 
of iterations. However, in some cases, with a large number of 
iterations, the algorithm can get to the descending branch, 
having passed its maximum. 

An image of a graph with changed diameters of arcs is 
given by the DrawNetwork (G) operator with a previously 
changed weight matrix G: = Digraph (A1, weighted) (Fig. 3).  

  
Fig. 3. Optimized network after 45 generations of evolution 

Note that, according to the problem statement, the sum of 
the nominal diameters (throughput) of the original network 
and the optimized one is the same. Consequently, the new 
network did not require more material and the throughput 
increased by almost 25%. At the same time, significant 
changes have occurred in the network graph scheme. 
Disappeared, for example, the arc (16,9), since as a result of 
evolution, its diameter turned out to be equal to zero. This 
arc does not affect the network bandwidth in any way, and 
the algorithm transferred its bandwidth to other arcs. It is 

also characteristic that the final arcs connected to the drain 
and having large weights (diameters) did not change their 
values in the course of evolution. 

For comparison, consider a network graph of three 
parallel branches of order N = 17 and size M = 34 (Fig. 4). 
We set the weights of the arcs: 

k:=5: N:=3*k+2;  

 for i to k-1 do  

  for j to 3 do 

    A0[i+k*j-k+1,i+k*j-k+2]:=5+i: 

  od:  

  for j to 2 do 

    A0[i+k*(j-1)+1,i+k*j+2]:=1+j: 

    A0[i+k*j+1,i+k*(j-1)+2]:=1+j: 

   od:  

  od: 

 for i to 3 do  

   A0[1,k*(i-1)+2]:=i:  

   A0[k*i+1,n]:=5:  

 od: 

We choose the total throughput (the sum of the diameters 
of all arcs) equal to 150, the same as for the previous graph 
(Fig. 1).  

 

Fig. 4. Planar heat network  2, N=17, M=34  



The step of changing the capacities in this example is 
chosen equal to step = 0.3, and the length of the 
chromosomes (the number of pairs of changed arcs) is 32. 

The result of the evolutionary process has the same 
character (Fig. 5), but the flow value is greater than P = 
12.17. In the process of counting, a false maximum appears 
on the j=9 generation of chromosomes. The modified 
network is shown in Figure 6. The algorithm redistributed 
the arc diameters mainly from the drain to the source. The 
arc (9-5) with a diameter of 0 was actually erased from the 
diagram. 

 
Fig. 5.  The value of the stream through the network 2 for 35 

generations of the algorithm 

 

Fig.6. Optimized network after 35 generations of evolution 

 

CONCLUSION 

The main task of the algorithm is the problem of network 
design. For a simple topology of a directed graph with a 
symmetric structure of arcs, the problem is solved intuitively 
and is reduced to a uniform distribution of the capacities of 
arcs. In practice, the networks have already been installed 
and it is possible to increase the network bandwidth only by 
redistributing the bandwidth of individual branches. The 
natural limitation of funds for the construction of the network 
also implies the condition for limiting the total throughput of 
all arcs. An algorithm for solving this problem is proposed, 
based on the known Push-Relabe algorithm built into the 
Maple system, and the genetic maximum search algorithm. 
Numerical experiments with the constructed algorithm 
showed that the result significantly depends on the step of 
changing the diameters of the arcs and on the length of the 
chromosome. A similar evolutionary algorithm was 
previously used in the design of building structures [12].  
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