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AHaM3UPYIOTCS CIIEKTPBHI COOCTBEHHBIX KOJICOAHWH HEKOTOPBIX MPOCTHIX PETYJSAPHBIX CH-
cteM. OOHAPYKEHO CBOWCTBO BJIOKECHHSI CIIEKTPOB CHUCTEM C MEHBIIUM IOPSIKOM B CIIEKTPHI CH-
cteM ¢ OompiuM nopsiikoM. [TokazaHo, 9YTO CBOMCTBO BIIOYKEHHUS CTICKTPOB B KJIIACCHUECKOM 3aadye
(0] KOJIGGaHI/II/I pryro COCAMHCHHBIX pr3OB Ha rnamcoﬁ IIJIOCKOCTHU HpOSIBJIHGTCSI B 3aBUCUMOCTH OT
KpeIIeH!sI CUCTEeMBI. B 3a7aue 0 BepTUKaIbHOM KOJIEOAHUW PABHOMEPHO PACIIOJIOKEHHBIX TPY30B
Ha yIPYyroil HeBeCOMOM OajKe MOyuyeHO, YTO BBICIIAS YACTOTa HE 3aBHCHUT OT YMcia rpy3oB. Ompe-
JeJIEHUE YacTOT KOoJaeOaHui CHCTEM, 00J1aJarolfX CBOMCTBOM BJIOJKEHHUS, CBEJIOCHh K HAXO0XKICHUIO
COOCTBEHHBIX YHCENl OUCUMMETPUYHON MaTPHUIIBI.

KiroueBble cj10Ba: COOCTBEHHBIE KOJICOaHUsI, CBOMCTBO BJIOKEHUS, CIIEKTp, Oanka, BbICIIas
yacToTa KoyebaHuil, OuCMMMETpUYHAs MaTpUIla

Introduction. Analysis of eigenfrequency spectra of mechanical systems and structures is of
great practical importance. In [1] on the specifics of the spectrum of oscillations of the system is
proposed to detect defects in products. The temperature and the crystallographic orientation of the
lattice, as shown in [2], affect the spectrum of the oscillations of the single-crystal rotor blades of
the engine. Analysis of the adequacy of the mathematical model of the compressor-condenser unit
in [3] is carried out on the spectrum of oscillations obtained by the finite element method.

Among the mechanical systems and building structures, a class of regular systems can be
singled out separately, having periodically repeated elements or groups of elements in their struc-
ture [5 -8]. We show that the spectra of some regular systems have one previously unnoticed prop-
erty — the embedding property of frequency spectra.

Natural oscillations of regular trusses were studied in [9-13].

Cargo system on a smooth plane fixed on one side. Consider the equations of small oscilla-
tions of the system of loads connected by linear elastic elements (springs) with stiffness ¢ (Fig. 1).
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Fig. 1. Cargo system with elastic bonds on a smooth plane, n=6
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Applying the Lagrange formalism, we introduce generalized coordinates — linear displace-
ments of loads. The kinetic energy of the system of loads of the same mass m has the form

n
T=m) /2, ()
k=1
where X, is the velocity of the k-th point. The coordinate x, corresponds to the attachment point
of the left spring. The potential energy of compression of springs has the form
n
]Ych(xk_1 —x)* /2, x,=0.

k=1
We write the system of n Lagrange equations of the 2nd kind (k=1,...,n)

d(aTj or oIl

di\ox, | ox, ox,

in matrix form

mX +[D,1X =0, )

where [D, ] is the stiffness matrix, X — the displacement vector of loads of length #, ¥ — vector
of accelerations. For n=4 this matrix, for example, has the form

2c —¢ 0 0
[D4] _| ¢ 2¢c — O 3)
0 —c 2¢ -c
0 0 - c

Note that this matrix is not symmetric with respect to the side diagonal. If we multiply (2)
by the matrix of compliance [B,] inverse to [D,], then taking into account the substitution
X = Asin(wt + @,) equivalent to the replacement X =—-a’X, the problem is reduced to the prob-
lem of the eigenvalues of the matrix [B,]: mw’[B,]X = X , where A" the eigenvalue corre-

sponds to the eigenfrequency @, or [B,]X =A™ X . At n=4 the matrix [B,] has the form

(8=

[\O T (O R N T
W W N =
AW N ==

1
1
1
1

The elements of the upper (right) triangle of this symmetric matrix in General for an arbitrary
value n have the form:

b

i,i+]

=i,i=1..,n—j, j=0,..,n—-1.

Eigenfrequency spectra for systems with different number of loads at c=1 N/m, m =1 kg are
shown by curves (Fig. 2). Conventionally, each curve connects the points corresponding to the fre-
quencies of the system with » masses, and k is the number of frequencies.
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n=12

Fig. 2. Eigenfrequency spectra of unilaterally fixed cargoes, ¢ '

Discovered the next match of frequencies:

o =) =a{"...=0,618¢7", o =" = 0{'?...=1,618¢7",

o

o = o = oD ~1.802¢7, .

D=V =0V, =1,000c”", & =o' =", .=1,247¢7",

The observed patterns allow to obtain some frequencies without resorting to calculations:
o =0,618¢7", 0P =1,618¢7", oV =1,000c"", @Y =1,247¢7",
o5 =1,802¢7!, k=1,2,...

The list goes on.

Cargo system on the plane, fixed on both sides. The equations of oscillation of loads,

connected by springs, not stressed at rest (Fig. 3), almost no different from the previous example.
The potential energy of compression of springs has the form:

n+l

IY:cZ(xk_1 —x)?/2, x,=x,,=0.
k=1

7
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Fig. 3. Cargo system with elastic ties on a smooth plane
and double-sided fastening, n=6
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The stiffness matrix in (2) at n=4 differs from (3) only in the element on the last line and has
the form

2c —¢ 0 0

[D ]: - 2¢ - 0
4 0 - 2¢ -cl|

0 0 - 2

The matrix of compliance inverse to the matrix [D,] has the property of symmetry. At n=4
it has the form:

4 3 2 1

113 6 4 2
[Bi]=—

5¢ |2 6 3

1 2 3 4

A generalization of the form of this matrix to the General case is obvious. The compliance
matrices for an arbitrary number of loads » have the form

n n-1 .. 2
. n—-1 2(n-1) .. 4
B, ]= n-2 3n-1) .. 6 3
(n+1)c
1 2 o n=1 n|

Graph of frequency distribution in the spectra (Fig. 4) with a different number of masses is
similar to the schedule in figure 2. However, there is a fundamental difference that constitutes the
main idea of this article. If in the first problem on the oscillation of loads fixed on the one hand
there is only a coincidence of some frequencies, here, in the symmetric problem, the frequency
spectra {£2,}, k=1,2,... have the property of embedding (Fig. 5): {€2,} {2}, where &, f is the

number of masses in the systems. We have the following relations at £ =1,2,...

Q{2 (2} S0} (232,00 (2} {2, ) @)
Moreover, these relations admit one more simple generalization:
{-Q/} = {'(2(_/+1)k+j}7 J’k = 1:27'“9 (5)

Fig. 4. Spectra of the eigenfrequencies of the system of goods two sides fixed, ¢! . Hori-
zontal lines indicate the matching frequency
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n=1,[1414]
n= 2,[1.000,1.732]
n=3,[0.765, 1414, 1.848]
n= 4,[0.618,.1.176,1.618,1.902]
n=5,[0.518,1.000, 1.414,1.732,1.932]
n= 6,[0.445.0.868. 1.247.1.564. 1.802. 1.950]
n=7,[0.390,0.765, 1.111, 1.414, 1.663, 1.848, 1.962]
n= 8,[0.347,0.684, 1.000, 1.286, 1.532,1.732, 1.879, 1.970]
n=9,[0313,0.618,0.908,1.176,1.414,1.618, 1.782, 1.902, 1.975]
n=10,[0.285,0.563, 0.831, 1.081, 1.310, 1.511, 1.683, 1.819, 1.919, 1.980]
n= 11,[0.261, 0.518,0.765. 1.000, 1.218, 1.414, 1.587, 1.732, 1.848, 1.932, 1.983]
n=12,[0.241, 0.479, 0.709, 0.929, 1.136, 1.326,?191 1.646,1.771, 1.870, 1.942, 1.985]
n= 13,[0.224,0.445,0.661, 0868, 1.064, 1.247, 1.414, 1.564, 1.693, L802, 1.888, 1.950, 1.987]
n=14,[0.209, 0.416, 0.618, 0.813, 1.000, 1.176, 1.338, 1.486, 1.618, 1.732, 1.827, 1.902, 1.956, 1.989 ]

Fig. 5. The attachment of the spectra of eigenfrequencies of the system loads, mounted on two sides

Loads on an elastic beam (version 1). Consider the vertical oscillations of the system of
loads of mass m, located on a linearly elastic weightless beam at the same distance from each other
and from the supports (Fig. 6).

Fig. 6. Beam with masses, n=9 (version 1)

The differential equation of small oscillations of this system does not differ from equation

(2), where X — the vector of vertical displacements of masses, and the elements of the matrix of
compliance, inverse to [D, ], are calculated by the Maxwell-Mohr formula:
L
m.m
b, =[—Ladx,
oy B
where m;(x) and m ;(x) are the diagrams of bending moments in the beam from the action of ver-

tical unit forces applied to the places of masses i and j (Fig. 7), where EJ is the bending rigidity of
beams. Diagrams of moments included in the Maxwell — Mohr formula have the form

Fig. 7. Moment plots for calculating the elements of the compliance matrix
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Maximum plot values:
M, (x)=x,(L-x;)/L, k=i, j, (6)
where L=(n+1)a is the beam length. If the loads are at the same distance from each other and from
the supports (span split with step a), then x;, =ak, k=i, j. Plots have an analytical expression

XM (x,)/ x,, 0<x<xp,
my(x) =
(L=x)M; (x;)/(L=x;), x;, <x<L.
Thus, the coefficients of the compliance matrix have the form

Lom. IS S 3
bz‘j:J. ; jdxzz(] n-0)@{"+j -2j(n+1))a i,
’ 0 EJ EJ
bj,l-zbl-’j,jgi.
At n = 4 the matrix has the form:
32 45 40 23
[B]— a |45 72 68 40
HT30E7 |40 68 72 45|
23 40 45 32

The eigenvalue 1" of this matrix corresponds to the eigenfrequency a),E") =1/ /'i,ﬁ")m . The

spectra of own frequencies of fluctuations, related to / £J/ (ma3) , for beams with various numbers
of goods displayed curves (Fig. 8) similar curves in figures 2 and 4.

@
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Fig. 8. Natural frequency spectra of loads on the beam, n = 1-48 (version 1)
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n=1,[2.449]
n= 2,[1.095,4.243]
n=3,[0.617,2.449,5.201]
n= 4,[0.395, 1.575,3.487. 5.742]
n=5,[0.274,1.095, 2.449, 4.243, 6.070]
n= 6,[0.201, 0.805, 1.807, 3.176, 4.793, 6.281 ]
n=7,[0.154,0.617, 1.385, 2.449, 3.766, 5.201, 6.424]
n= 8,[0.122,0.487, 1.095, 1.942, 3.008, 4.243, 5.507, 6.525]
n=9,[0.099,0.395, 0.888, 1.575, 2.449, 3.487, 4.628, 5.742, 6.599]
n=10,[0.082,0.326,0.734, 1.303, 2.030, 2.903, 3.895, 4.943, 5.925, 6.654]
n=11,[0.069, 0.274, 0.617, 1095, 1.708, 2.449, 3.305, 4.243, 5.201, 6.070, 6.697]
n=12,[0.058,0.234, 0.525, 0.934, 1.457,2.092, 2.831, 3.658, 4.539, 5.414, 6.187, 6.730]
n=.13,[0.050,0.201, 0.453, 0.805, 1.257, 1.807, 2.449, 3.176, 3.969, 4.793, 5.592, 6.281. 6.757]
n= 14,[0.044, 0.175, 0.395, 0.702, 1.095, 1.575, 2.138, 2.779, 3.487, 4.243,5.012, 5.742, 6.366, 6.779]

Fig. 9. The attachment of the spectra of eigenfrequencies of the system loads on the beam. Same
frequency are underlined
There is also an embedding of spectra of the form (4) and (5) found in the problem of loads
with elastic bonds on a smooth plane (Fig. 3). The dimensionless oscillation frequency

a)l(” = \/6 =2,449 at n=1 coincides with the known result for the oscillation frequency of the load

on a beam length 2a: @ = 6EJ/(ma3) [14].

Loads on a shortened elastic beam (version 2). Consider another fastening of masses, also
evenly distributed over the beam (Fig. 10). The difference from the previous problem is the short-
ened distances of the initial and last masses to the supports. Here the beam length L=na.

% . ° . . . . *— A
/2.

a } a # a ’ a # a % a a2

Fig. 10. Beam with masses, n=7, (version 2)

The maximum values of the moments plots are calculated by the same formulas (6), where
x, =a(k—1/2), k=i, j. The coefficients of the compliance matrix, the eigenvalues of which de-
termine the oscillation frequency, have the form

L
b, =I%ds =& Qi—1)(2j—2n-1)Q@>+ j* —i— j—2nj+n)+1)/ (48nEJ), i< j,
0

bj,i:bl.,j, jgl‘-

At n=4 the matrix has the form

49 95 81 31]
95 225 207 81
81 207 225 95
(31 81 95 49
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Let's write the sets of cigenvalues A = {4 A", A" of several matrices, where the
lower index means the eigenvalue number, the upper — the order of the system. Let us refer these
values to 21(1) /48=a’/ (EJ):

AD =1, AP =41, 8),AP = {1, 8/3, 40},

A® =11, 8 641442}, A® =11, 52/5+45,156+68/5},

A©® =11, 8/3,8,40,320+184+/3}.

i £ st R S / 1~ 4

@ (1=in

Fig. 11

You can see that the embedding of spectra here is simpler than (4). At k/=1,2,... we have:
{2} c{Q), {2 i), {2 {2}, {2)c{Q,},
or {2}c{Q,}, j,k=12... The latter equality also means that if the number of masses with this

arrangement on the beam is expressed as a Prime number, then in the case of joint operation of sev-
eral similar systems with different number of loads, there will be no internal resonance phenome-
non. Another property of the frequency spectra found is that the higher frequency here does not de-
pend on the number of loads », while for the first variant of the cargo arrangement (Fig. 6) this fre-
quency increases with »  smoothly, asymptotically  approaching the  value

w=~|48EJ | (ma®) ~6,928¢" (F ig. 8) — the highest frequency for the second variant of the loca-

tion of goods. In fact, this corresponds to the principle of Saint-Venant.

Conclusion. The analysis of the spectra of frequencies of natural oscillations of two simple
regular systems have identified a property investment or spectra match the frequency of the systems
of different order. This property makes it possible in some cases to easily obtain simple solutions to
the eigenfrequency problems of large-dimensional systems, reducing them to simple systems. A
simple illustrative representation of the frequency spectra in the form of certain curves connecting
the frequency points of the spectra is proposed. Formulas for matrix elements whose eigenvalues
determine the frequencies of the system are obtained for an arbitrary order of the system. In the
problem of small oscillations of loads on the beam it is shown that the higher frequency of oscilla-
tions does not depend on the number of loads.
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THE PROPERTY OF EMBEDDING OF NATURAL FREQUENCIES SPECTRA
OF REGULAR MECHANICAL SYSTEMS

M. N. Kirsanov'
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Moscow, Russia

'Dr of Physics and Mathematics, professor, tel.: +7(495)3627314; e-mail: c216(@ya.ru

The frequency spectra of natural oscillations of some simple regular systems are analyzed.

The property of embedding the spectra of systems with a smaller order in the spectra of systems
with a large order has been found. It is shown that the property of embedding spectra in the classical
problem of oscillation of elastically connected loads on a smooth plane is manifested depending on
the mounting system. In the problem of vertical oscillation of uniformly located loads on an elastic
weightless beam, it was found that the highest frequency does not depend on the number of loads.
Determination of the oscillation frequencies of systems with the property of an embedding is re-
duced to finding eigenvalues of a bisymmetric matrix.

Keywords: truss, induction, Maple, deflection, kinematic variability.
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