Научный журнал № 6 (7), 2016

Москва 2016

Научный журнал

№ 6 (7), 2016

НАУЧНО-МЕТОДИЧЕСКИЙ ЖУРНАЛ

Главный редактор: Вальцев С.В.

Заместитель главного редактора: Котлова А.С.

РЕЛАКЦИОННЫЙ СОВЕТ:

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) Свидетельство ПИ № ФС77 - 63075 Издается с 2015 года

Выходит ежемесячно Published monthly

Сдано в набор: 10.06.2016. Подписано в печать: 14.06.2016.

Формат 70х100/16. Бумага офсетная. Гарнитура «Таймс». Печать офсетная. Усл. печ. л. 12,59 Тираж 1 000 экз. Заказ № 713

ТИПОГРАФИЯ ООО «ПресСто». 153025, г. Иваново, ул. Дзержинского, 39, оф.307

ИЗДАТЕЛЬСТВО «Проблемы науки» г. Москва

Абдуллаев К.Н. (д-р филос. по экон., Азербайджанская Республика), Алиева В.Р. (канд. филос. наук, Узбекистан), Акбулаев Н.Н. (д-р экон. наук, Азербайджанская Республика), Аликулов С.Р. (д-р техн. наук, Узбекистан), Ананьева Е.П. (канд. филос. наук, Украина), Асатурова А.В. (канд. мед. наук, Россия), Аскарходжаев Н.А. (канд. биол. наук, Узбекистан), Байтасов Р.Р. (канд. с.-х. наук, Белоруссия), Бакико И.В. (канд. наук по физ. воспитанию и спорту, Украина), Бахор Т.А. (канд. филол. наук, Россия), Баулина М.В. (канд. пед. наук, Россия), Блейх Н.О. (д-р ист. наук, канд. пед. наук, Россия), Богомолов А.В. (канд. техн. наук, Россия), Волков А.Ю. (д-р экон. наук, Россия), Гавриленкова И.В. (канд. пед. наук, Россия), Гарагонич В.В. (д-р ист. наук, Украина), Глушенко А.Г. (д-р физ.-мат. наук, Россия), Гринченко В.А. (канд. техн. наук, Россия), Губарева Т.И. (канд. юрид. наук, Россия), Гутникова А.В. (канд. филол. наук, Украина), Датий А.В. (д-р мед. наук, Россия), Демчук Н.И. (канд. экон. наук, Украина), Дивненко О.В. (канд. пед. наук, Россия), Доленко Г.Н. (д-р хим. наук, Россия), Есенова К.У. (д-р филол. наук, Казахстан), Жамулдинов В.Н. (канд. юрид. наук, Россия), Ильинских Н.Н. (д-р биол. наук, Россия), Кайракбаев А.К. (канд. физ.мат. наук, Казахстан), Кафтаева М.В. (д-р техн. наук, Россия), Кобланов Ж.Т. (канд. филол. наук, Казахстан), Ковалёв М.Н. (канд. экон. наук, Белоруссия), Кравцова Т.М. (канд. психол. наук, Казахстан), Кузьмин С.Б. (д-р геогр. наук, Россия), Курманбаева М.С. (д-р биол. наук, Казахстан), Курпаяниди К.И. (канд. экон. наук, Узбекистан), Линькова-Даниельс Н.А. (канд. пед. наук, Австралия), Маслов Д.В. (канд. экон. наук, Россия), Маиаренко Т.Н. (канд. пед. наук, Россия), Мейманов Б.К. (д-р экон. наук, Кыргызская Республика), Назаров Р.Р. (канд. филос. наук, Узбекистан), Овчинников Ю.Д. (канд. техн. наук, Россия), Петров В.О. (д-р искусствоведения, Россия), Розыходжаева Г.А. (д-р мед. наук, Узбекистан), Саньков П.Н. (канд. техн. наук, Украина), Селитреникова Т.А. (канд. пед. наук, Россия), Сибирцев В.А. (д-р экон. наук, Россия), Скрипко Т.А. (канд. экон. наук, Украина), Сопов А.В. (д-р ист. наук, Россия), Стрекалов В.Н. (д-р физ.-мат. наук, Россия), Стукаленко Н.М. (д-р пед. наук, Казахстан), Субачев Ю.В. (канд. техн. наук, Россия), Сулейманов С.Ф. (канд. мед. наук, Узбекистан), Трегуб И.В. (д-р экон. наук, канд. техн. наук, Россия), Упоров И.В. (канд. юрид. наук, д-р ист. наук, Россия), Федоськина Л.А. (канд. экон. наук, Россия), Иуиулян С.В. (канд. экон. наук, Россия), Чиладзе Г.Б. (д-р юрид. наук, Грузия), Шамшина И.Г. (канд. пед. наук, Россия), Шарипов М.С. (канд. техн. наук, Узбекистан), Шевко Д.Г. (канд. техн. наук, Россия).

АДРЕС РЕДАКЦИИ: 117321, РФ, г. Москва, ул. Профсоюзная, д. 140

Служба поддержки:

153008, РФ, г. Иваново, ул. Лежневская, д.55, 4 этаж Тел.: +7 (910) 690-15-09.

http://scientificmagazine.ru/ e-mail: admbestsite@vandex.ru

© Научный журнал/Москва, 2016

Содержание

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ6
Кирсанов М. Н. Формула для расчета прогиба балочной фермы с произвольным числом панелей
Кузнецова К. С. Применение квадратур Гаусса-Эрмита для оценки ожидаемой полезности инвестиционного портфеля с использованием пакета MATLAB8
${\cal K}$ онжаксынов $A.E.$ Моделирование процесса георадиолокации для электрических неоднородных сред
<i>Селезнева Е. А., Шафигуллин Э. Р.</i> Нелинейная динамика и изменение климата14
Сохарева М. А. История открытия скалярного произведения векторов16
ГЕОЛОГО-МИНЕРАЛОГИЧЕСКИЕ НАУКИ20
Андреева Р. Ю. Переходные зоны в однородных и неоднородных пластах20
ТЕХНИЧЕСКИЕ НАУКИ
Асланов З. Ю., Дадашова К. С., Абдуллаева С. М. Разработка рекомендаций по внедрению методов метрологии
Бундин А. А., Нестеров А. Н. Анализ автоматизированных систем
<i>Толмач В. А., Зубкова Т. М.</i> О построении дистанционного интеллектуального адаптивного дистанционного интерфейса на базе WIMP технологий для компьютерных систем широкого назначения
Толмач В. А., Зубкова Т. М. Проектирование дистанционного графического интерфейса по технологиям WIMP
Байбулов А. К., Казагачев В. Н., Ахметова М. Р., Тлеубергенов А. Виртуальная лаборатория в курсе «Сопротивление материалов»
<i>Чан Нгок Ту, Нгуен Тхи Хай Ха, Нгуен Тхи Тху Куинг</i> Численное моделирование качки полупогружной установки на регулярном волнении
Ваулин С. С., Жданов А. С. Автоматизация археологической разведки с помощью геоинформационных технологий
Моисеев М. А., Терехов В. П. Исследование методов прогнозирования международных конфликтов 42
<i>Исаев Д. С., Ломовской И. В.</i> Учет модели памяти в алгоритме поиска утечек ресурсов в программах на языке С
Петухова Н. А. Проблема согласования линий передач в СВЧ диапазоне53
Кожахметова А. С. Кислотный разрыв пласта
Войвод О. В., Марчук Д. П. Эргономика рабочего пространства57
Марчук Д. П., Войвод О. В. Эргономика автомобильного кресла
Карнаухов Н. С. Разработка модели деятельности магазина DVD-дисков60
Рогожина А. С. Система автоматизированного контроля состояний режущих инструментов для станков с ЧПУ 62

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

Формула для расчета прогиба балочной фермы с произвольным числом панелей Кирсанов М. Н.

Кирсанов Михаил Николаевич / Kirsanov Mikhail Nikolaevich – профессор, доктор физико-математических наук, Национальный исследовательский университет, Московский энергетический институт, г. Москва

Аннотация: с использованием метода индукции и системы компьютерной математики Maple получена формула для прогиба плоской упругой статически определимой фермы. Верхний пояс фермы прямолинейный, нижний — представляет собой ломаную линию. Равномерная нагрузка приложена к узлам верхнего пояса.

Ключевые слова: ферма, Maple, прогиб, индукция, точное решение.

Ввеление

Несмотря на развитие численных методов, и специализированных программ для расчета ферм, большинство из которых основано на методе конечных элементов [1-2], актуальность точных аналитических решений для разного рода характеристик конструкции велика. В работах автора [3-5] и его учеников [6-8] получен ряд точных выражений для прогиба плоских и пространственных ферм различного очертания и под действием различных нагрузок. Ценность формульных решений состоит в количестве параметров описываемой конструкции. Как правило, в число таких параметров входят только два размера фермы (высота и пролет), число панелей, нагрузка и характеристики сечений. В настоящей работе рассматривается ферма с тремя геометрическими параметрами (рис. 1). Дополнительный параметр h задает высоту подъема промежуточных узлов нижнего пояса. При h=0 имеем стандартную ферму с параллельными поясами.

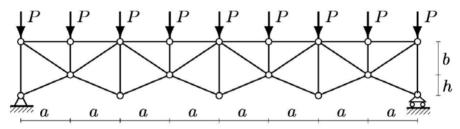


Рис. 1. Ферма с четырьмя панелями (n=4)

Постановка задачи

Для вычисления прогиба воспользуемся формулой Максвелла – Мора, применимой для упругой стадии работы элементов фермы:

$$\Delta = \sum_{k=1}^{m-3} S_k s_k l_k / (EF_k). \tag{2}$$

Использованы следующие обозначения: S_k — усилия в стержнях фермы от действия нагрузки, распределенной по узлам верхнего пояса, S_k — усилия от единичной вертикальной нагрузки, приложенной к центральному узлу в середине пролета, l_k – длины стержней. Материал стержней предполагается одинаковым, для всех стрежней модуль упругости равен Е. Усилия в стержнях находим методом вырезания узлов с помощью программы [9]. Данные о конфигурации и размерах фермы вводятся через координаты ее узлов. Ферма с n панелями содержит m = 8n + 4стержня, включая три опорные. Опорные стрежни будем считать недеформируемыми. В расчет длины этих стержней не войдут, поэтому масштаб и размерность координат опорных узлов не имеют значения и взяты произвольно.

Систему m уравнений равновесия запишем в матричной форме $\mathbf{G}\overline{S} = \overline{B}$,

где \overline{S} — вектор усилий в стержнях, включая три опорные, \overline{B} — вектор нагрузок. В нечетные элементы B_{2i-1} записываются горизонтальные нагрузки, приложенные к узлу i, в четные B_{2i} — вертикальные. Решение системы линейных уравнений находим в символьной форме, пользуясь системой компьютерной математики Maple [9] с помощью обратной матрицы $\overline{S} = \mathbf{G}^{-1} \overline{B}$.

Решение

Метод индукции получения формулы для прогиба фермы с произвольным числом панелей состоит в последовательном аналитическом решении задачи для ферм с одной, двумя, тремя и т. д. панелями. При этом обычно (но далеко не всегда) решение приобретает форму полинома по параметрам конструкции. Коэффициенты при подобных слагаемых образуют последовательность, общий член которой можно найти средствами системы Maple. Сначала с помощью оператора rgf_findrecur надо найти рекуррентное уравнение, которому удовлетворяют члены обнаруженной последовательности, затем найти решение, пользуясь оператором rsolve. Решение получилось в виде $\Delta = P(\Delta_1 + \Delta_2 + \Delta_3 + \Delta_4) / (EF),$ где каждое слагаемое Δ_k , k = 1,...,4 отвечает за свою группу стержней: нижний пояс, верхний пояс, стойки и раскосы соответственно. Всего в слагаемых потребовалось идентифицировать пять коэффициентов:

$$\begin{split} \Delta_1 &= g^3 C_1 / (48(b+h)^2), \ C_1 = 10n^4 + 2n^2 (1+3(-1)^n) - 3(1-(-1)^n), \\ \Delta_2 &= a^3 C_2 / (48b^2), \ C_2 = 10n^4 + 2n^2 (1-3(-1)^n) + 3(1-(-1)^n), \\ \Delta_3 &= (h^2 C_3 / 12 + (2n+1)b^2 + bhC_4) / (2(b+h)), \\ C_3 &= 10n^4 - 2n^2 (5+3(-1)^n) + 24n + 3(3+(-1)^n), \ C_4 = 1+4n-n^2 (1+(-1)^n), \\ \Delta_4 &= c^3 (h^2 C_2 / 24 + n^2 b^2 + bhC_5 / 4) / (2b^2 (b+h)^2), \\ C_5 &= 1-(-1)^n 4n + 2n^2 (2-(-1)^n), \ c = \sqrt{a^2 + b^2}, \ g = \sqrt{a^2 + h^2}. \end{split}$$

На рисунке 2 показано изменение прогиба в зависимости от размеров фермы и числа панелей. Кривые относительного (безразмерного) прогиба $\Delta' = \Delta E F_0 / (P_s L)$ построены при фиксированной длине пролета L = an = 60 m, заданной общей нагрузке $P_s = (2n+1)P$, размер h на рисунке указан в метрах. Наименьший прогиб наблюдается при малых значениях h. Однако, как показывает более подробный численный анализ, минимум не приходится на h=0 (прямолинейный нижний пояс). Найденное решение допускает и отрицательные значения h.

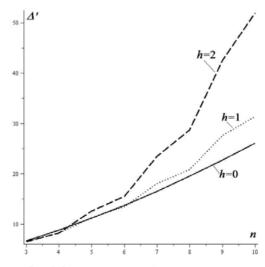


Рис. 2. Зависимость прогиба от числа панелей

Оценим асимптотику решения. Аналитическая форма полученного результата позволяет применить оператор **limit** системы Maple: $\lim \Delta' / n^4 = 5h^2 / (8L(b+h))$.

Подобные асимптотические исследования проведены в обзоре [8].

Выводы

Найденная формула для прогиба достаточно проста, может быть использована в проектных инженерных и теоретических расчетах. С помощью полученного решения можно подобрать оптимальные размеры фермы, распределение материала по поясам.

Литература

- 1. *Еремин К. И., Шульга С. Н.* Напряженно-деформированное состояние узлов подкрановоподстропильных ферм // Промышленное и гражданское строительство, 2012. №. 6. С. 40-43.
- Feng L. J., Wu L. Z., Yu G. C. An Hourglass truss lattice structure and its mechanical performances // Materials & Design, 2016. Vol. 99. P. 581–591.
- 3. *Кирсанов М. Н.* Напряженное состояние и деформации прямоугольного пространственного стержневого покрытия // Научный вестник ВГАСУ. Строительство и архитектура, 2016. № 1 (41). С. 93–100.
- 4. *Кирсанов М. Н.* Точные формулы для расчета прогиба и усилий в стержнях типовой фермы «Молодечно» с произвольным числом панелей // Инженерно-строительный журнал, 2016. № 1 (61). С. 33–41.
- 5. Dong Xiaomeng, Kirsanov M. N. The dependence of the deflection of the truss from the // Вестник научных конференций, 2016. № 1-4 (5). С. 6–7.
- 6. *Ларичев С. А.* Индуктивный анализ влияния строительного подъема на жесткость пространственной балочной фермы // Trends in Applied Mechanics and Mechatronics. М: Инфра-М., 2015. Т. 1. С. 4–8.
- 7. *Тиньков Д. В.* Анализ влияния условий закрепления на прогиб плоской балочной фермы с нисходящими раскосами // Trends in Applied Mechanics and Mechatronics. М: Инфра-М., 2015. Т. 1. С. 52–56.
- 8. *Тиньков Д. В.* Анализ точных решений прогиба регулярных шарнирно-стержневых конструкций // Строительная механика инженерных конструкций и сооружений, 2015. № 6. С. 21–28.
- 9. Кирсанов М. Н. Марle и Марlet. Решение задач механики. СПб.: Изд-во Лань, 2012. 512 с.

Применение квадратур Гаусса-Эрмита для оценки ожидаемой полезности инвестиционного портфеля с использованием пакета MATLAB Кузнецова К. С.

Кузнецова Ксения Сергеевна / Kuznetsova Xenia Sergeevna – инженер-математик, соискатель, кафедра прикладной математики, факультет автоматизации и информатики, Липецкий государственный технический университет, г. Липецк

Аннотация: в статье анализируются сложные методы интегрирования для решения проблем оценки ожидаемой полезности инвестиционного портфеля, рассматривается программа, разработанная в среде MATLAB, для вычисления интеграла на неограниченном промежутке, а также оценивается точность приведённого алгоритма.

Ключевые слова: финансовая инженерия, численные методы, квадратуры Гаусса-Эрмита, интеграл на неограниченном промежутке.

В современной финансовой инженерии очень часто встаёт проблема оценки ожидаемой полезности инвестиционного портфеля. В такой ситуации количественный аналитик сталкивается с задачей нахождения интеграла на неограниченном промежутке, которую невозможно решить аналитическим способом, но даже с применением хорошо известных численных методов, например, квадратур Ньютона-Котеса или Гаусса решение оказывается неэффективным или просто невозможным.

Предположим, инвестор держит в портфеле одну облигацию, стоимость которой будет равна 1, и акцию [2, с. 262], цена которой случайна и имеет логнормальное распределение e^x , где $x \sim N(\mu, \sigma^2)$. Тогда ожидаемая полезность портфеля будет иметь вид