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Statement of the problem. Analytical dependences of the deflection and displacement of the sup-
port of a flat lattice truss on the number of panels are being sought. The truss has a double lattice, a 
rectilinear lower belt and an upper belt raised in the middle part. 
Results. For two types of loading, according to the Maxwell-Mohr formula, analytical dependenc-
es of the deflections of the structure on the load, dimensions and number of panels are obtained. 
To generalize a series of particular solutions for trusses with different numbers 
of panels for an arbitrary case, the induction method and the analytical capabilities of the Maple 
computer mathematics system were used. For some solutions, asymptotic approximations are ob-
tained. The distribution of forces in the rods of the structure is shown. 
Conclusions. The obtained formulas can be used in optimization problems and as test ones for 
evaluating approximate numerical solutions. Cases of geometric variability of the truss with the 
number of panels being a multiple of three are revealed. An algorithm for identifying the corre-
sponding distribution of possible velocities of the joints is presented. 

 
Keywords: flat truss, deflection, support displacement, induction, asymptotics, Maple, analytical solution, 
geometric variability. 
 
Introduction. One of the most common types of trusses are lattice trusses. The paper swets 

forth a scheme of this exact type and provides a fairly general formula for the dependence of 

its deflection, the displacement of the movable support and the first frequency of natural os-

cillations on the dimensions of the truss and the number of panels (Fig. 1).  

The truss belongs to regular constructions [2, 4]. For the analytical calculation of the stress-

strain of such structures with an arbitrary number of periodicity cells (panels), the inductive 

approach [1, 20] is used. Theoretical questions regarding the existence and analysis of regular 
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planar and spatial statically determined trusses were previously addressed by S. D. Guest, 

R. G. Hutchinson and N. A. Fleck [11––13]. 
 

 
 

Fig. 1. Girder at n = 5 under a concentrated load  
 

A special feature of the suggested scheme is that due to the complex lattice, such simple meth-

ods as the section method (there are no Ritter sections here) and the method of sequential cut-

ting of nodes are not applicable to it, as there is no initial node (hinge) connected to two rods in 

the farm with unknown effort. A general system of equilibrium equations for all nodes is com-

piled and solved for the calculation including the reactions of the supports as well. Therefore 

according to the condition of the task, the number of panels in the design is arbitrary leading to 

a solution to large-order systems and the need to involve a computer mathematics system. If we 

limit ourselves only to the definition of efforts, any system is appropriate (Maple, Mathematica, 

Maxima, Derive, etc.). However, in order to derive general formulas by induction, the system 

must have specially designed operators. The most convenient system turned out to be Maple 

[10], in the language of which there is a program previously used to investigate the deflection of 

flat [7, 8, 14, 18, 19] and three-dimensional girders [3, 16, 17]. In combination with the opera-

tors of this system, the method of induction was also used for calculating the natural frequencies 

of flat statically determinate trusses. For analytical calculations of rod systems, including stati-

cally indeterminate ones, L. S. Rybakov’s algorithm is also used [5, 6]. 
1. Truss design and force calculation. A flat truss has 2n + 2 panels of length a along the 

bottom chord, height 3h / 2 in the middle and h above the supports. The left support is pivotal-

ly movable, the right one is fixed. There are ns = 8n + 14 bars in the truss, including three bars 

modeling supports. The lower rectilinear chord contains 2n + 3 hinges, the upper one — 

4n + 4. The farm is statically determinate. In order to identify the forces in the rods, the pro-

gram in the Maple language [1] is used enabling us to find the forces in the rods in an analyti-

cal form. Rods and nodes are numbered. E.g., the coordinates of the hinges of the lower chord 

look in the following way (the origin of coordinates in the hinge of the movable support): 

( 1) , 0, 1,..., 2 3.i ix i a y i n      
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The coordinates of the upper belt are 

2 4 2 5 4 6 2 2 4 7 2 3

2 4 2 5 4 6 4 7

2 5 2 5

0, , , ,
,

( 1/ 2) , 3 / 2, 1,..., 2 .

n n n n n n

n n n n

i n i n

x x a x x x x
y y y y h
x i a y h i n

     

   

   

   

   

     

The structure of the girder is specified by ordered lists corresponding to the rods. For the ele-

ments of the lower belt, we have lists:  

[ , 1], 1,...,2 1.iV i i i n     

The upper belt is encoded in the following way:  

2 2 [ 2 3, 2 4], 1,..., 2 3.i nV i n i n i n          

Similarly, bars of the lattice are encoded in cycles of length 2n + 1. 

A system of equilibrium equations for all the nodes is compiled in projections onto the coor-

dinate axes S G B . For each node in the system, two equations are assigned in the projection 

on the x and y axes respectively. The elements of the matrix G of the system are the direction 

cosines of the forces calculated from the coordinates of the nodes and in compliance with the 

data of the lists , 1,...,i sV i n   

The right part of the system is a load vector B . Vertical forces are placed in the even ele-

ments of this vector, and horizontal forces in the odd ones. For uniform loading of the nodes 

of the lower belt (Fig. 4) we have:  

2 , 2,.., 2 2iB P i n   . 

The remaining components of this vector equal zero. Efforts are identified based on the solu-

tion of the system S G B . In the Maple system the solution of a system of linear equations 

compiled in matrix form is identified by means of the inverse matrix method. The inverse ma-

trix is identified easily in Maple. The corresponding fragment of the software looks in the fol-

lowing way: G_1:=1/G: S:=G_1. B. Here S is the vector of unknown forces; B is the vector of 

the right parts of the system of equations; G_1 is the inverse matrix. The multiplication of a 

matrix by a vector in the Maple language is denoted by a dot. 

2. Random geometric variability. The first calculations of the truss at different values that 

are common for systems are called to zero if the number of panels is a multiple of three. In 

order to confirm this, a scheme of possible speeds of the nodes must be designed. To this end, 
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it is convenient to regulate the rotation speed of the middle hinge of the two-link link based 

on the speeds and coordinates of the hinge and the speed of the rods. We have a double link i, 

j, k (Fig. 2). Components: ,x iv , ,y iv  speed joints i are part of the line connection system:  

, ,

, ,

, ,

, ,

( ) ,
( ) ,

( ) ,
( ) .

x j x i j i ij

y j y i j i ij

x k x i k i ik

y k y i k i ik

v v y y

v v x x

v v y y
v v x x

   

   

   

   

 

where ij , ik  are angular speeds of the links.  

 

 

Fig. 2. A double link 
for identifying speeds 

 
It is convenient to represent the calculation schemes in the form of a graph meaning that the 

speed of points with the number i is calculated based on the data of the speeds of points k and j. In 

considering the truss at n = 3 (Fig. 3), we assume that the speed of hinge 5 is equally loaded, and 

the speed of rotation of hinges 16 and 13 is provided that will be denoted as v. These vectors are 

directed perpendicularly to the hinges 5–16 and 5–13, respectively. Next, we sequentially de-

sign graphs {5,16} 8 , {9,8} 19 , {9,19} 18 , {8,18} 7 , {16,18} 17 , {7,17} 6 , 

{7,16} 15 , {6,15} 14,  {5,14} 13,  {5,15} 4,  {4,14} 3,  {3,13} 2,  {4,13} 12,  

{3,12} 11,  {2,11} 10.  

As a result, we get  

2 4 6 8 3 7

10 19 11 18

2 2
12 13 16 17 15 14

2 / , 4 / ,
2 / , 2 ,

, ' 9 / ,

v v v v va c v v va c
v v u vh c v v v

v v v v v v v u v a h c

     

    

         

where 2 2c a h  . 

Hence a kinematically consistent field of variability rates of a variable system is identified 

using a rare specific system with a characteristic arrangement. It should be noted that suffi-

cient geometric characteristics of variability do not work here. In this case, the conditions for 
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switching on a closed circuit are not adapted either [15]. The suggested algorithm for identify-

ing the velocity field has a feature associated with the choice of the major points of the graph 

chain. Here the hinge 5 is chosen with a denoted zero speed. The disadvantage of the algo-

rithm is that the starting point is in chosen experimentally, simply by randomly going through 

the options. E.g, if we start from the hinge 10 moving from left to right, the sequence 

{1,10} 11,  {1,10} 2  of the double links iwth two known speeds (previously identified) is 

disrupted after the graph {2,11} 3 . 
 

 
 

Fig. 3. Variable truss speed distribution scheme, n = 3 
 

The same scheme of possible velocities can be obtained for other cases of n divisible by three. 

We exclude these cases from the search introducing a new variable  

 (6 ( 1) 3) / 4kn k     (1) 

for obtaining the dependence of the solutions on the number of panels.  

The kinematics of plastic fracture of three-dimensional trusses was discussed in [9]. 

2. Calculation of efforts. The solution of the system of linear equations in the Maple system 

yields analytical expressions for all the efforts. Additionally, the Maple operators allow us to 

obtain a visual picture of the distribution of forces in the rods in the numerical mode of this 

program. With a = 3 m, h = 2 m in the case of a distributed load (Fig. 4), we design a force 

diagram (Fig. 5).  

 

 
 

Fig. 4. Truss under the action of a uniformly distributed load along the lower belt with n = 4 
 

Stretched rods are highlighted in red, compressed rods in blue. The value of efforts is re-

lated to the value of P.  
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Fig. 5. Distribution of the efforts in case of an even load, n = 5, k = 4 
 

The alternation of the magnitude of the force in the belts is typical for multi-lattice trusses un-

der a uniform load. It should also be noted that the forces in some girder rods are comparable 

with the forces in the belts. 

The distribution of forces in the truss rods under a concentrated force in the middle of the 

lower belt is shown in Fig. 6. Most of the rods in the girder are not loaded, the rods of the up-

per one are compressed, the efforts on the belt monotonously increase (along the module) 

from the edge to the middle. The lower belt is stretched. 

 

 
 

Fig. 6. Distribution of the efforts in case of an even load, n = 5, k = 4 
 

In order to derive the formula for the dependence of the deflection on the number of pa-

nels, it is not necessary to write the forces in all the rods. The most interesting for the 

analysis of the stress state are the compressed rods in the middle of the upper and ten-

sioned in the lower belt. 
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Let us write the expressions for the effort SO (see Fig. 1) obtained based on the results of a 

static analysis of trusses with a successively increasing number of panels: 

4 / , 7 / , 15 / , 20 / , 32 / ,  ... .OS Pa h Pa h Pa h Pa h Pa h       
The recursive equation for this sequence obtained by the rgf_findrecur operator is as follows: 

, , 1 , 2 , 3 , 4 , 52 2 .O k O k O k O k O k O kS S S S S S          
The solution of the equation is as follows:  

2(6 2(( 1) 9) 3( 1) 3) / (8 ).k k
OS Pa k k h         

Similarly, the dependence of the force in the middle rod of the lower belt on the number of 

panels is obtained:  
2(6 2(( 1) 3) ( 1) 5) / (8 ).k k

US Pa k k h        
3. Deflection and displacement of the support. In order to calculate the truss deflection 

(vertical displacement of node C) under a load, the Maxwell-Mohr formula is used: 

 
1

/ ( )
sn

j j j
j

N N l EF


  ,  (2) 

where jN  are the efforts in the rod of the j girder caused by an applied load; jN is the effort 

caused by a single force directed towards the original deflection and applied to the point C; jl

is the length of the rod; EF is the rigidity of the rods. Let us look at a load evenly distributed 

along the nodes of the lower belt.  

Calculating the girders at k = 1, 2, 3,… sequentially, we get the solutions not depending on 

the number of panels:  

 
3 3 3

1, 2, 3,
2

k k kC a C c C h
P

EFh
 

 .  (3) 

The coefficients C1,k, C2,k, C3,k form sequences whose common members can be obtained in 

the Maple system. The coefficients C1,k  at a3 form the following numerical sequence whose 

first ten elements are: 18, 27/2, 411/2, 234, 984, 2403/2, 6267/2, 3816, 7794, 18675/2. In 

total, there must be 18 elements, i.e., it is necessary to sequentially calculate the deflection 

of 18 trusses in order to identify a common member of the sequence. This is found out as 

the Maple rgf_findrecur operator is being used to obtain a recursive equation that these 

numbers satisfy. A smaller sequence length does not yield an equation. The equation is of 

the ninth order: 

1, 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 94 4 6 6 4 4 .k k k k k k k k k kC C C C C C C C C C                   (4) 
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The solution of the equation is yielded by the rsolve operator:  
4 3 2

1, (30 20(1 ( 1) ) 6(21 23( 1) ) 112(1 ( 1) ) 9( 1) 9) / 32.k k k k
kC k k k k              

The other coefficients are obtained in the identical way:  

 

2
2,

3,

(6(13 12( 1) ) (58 74( 1) ) 3( 1) 3) /16,

(1 ( 1) ).

k k k
k

k
k

C k k

C k

        

    (5) 

The solution (3) with the coefficients (4), (5) is the desired dependence in the case of a dis-

tributed load along the lower belt. While loading the middle of the span with a concentrated 

force (Fig. 1), the solution will have the form (3) with the coefficients: 
3 2

1,

2,

3,

(4 2(1 ( 1) ) 2(12 11( 1) ) 17( 1) 17) /

.

8,

(6(5 4( 1) ) 17( 1) 17) / 8,

1 ( 1)

k k k
k

k k
k

k
k

C k k k

C k

C

         

     

    
The order of recurrent equations for identifying the coefficients in this case is less, the coeffi-

cients themselves have a simpler form. 
In order to identify the formula for the dependence of the displacement of the support on the 

number of panels, the above procedure must be repeated for the case of a unit force applied 

horizontally to the left support. Calculation according to the formula (1) for trusses with an 

increasing number of panels yields the following shift values:  
2 2 2

1 2 3
2 2

4 5

4 / ( ), 9 / ( ), 57 / ( ),

90 / ( ), 230 / ( ),  ... .

Pa hEF Pa hEF Pa hEF

Pa hEF Pa hEF

     

     
Generalizing these solutions, we obtain the following dependence of the deflection on the 

number of panels:  
2 2(6 3(1 ( 1) ) 5( 1) 1) / (4 ).k ka kP k k hEF         

It should be remembered that the actual number of panels n is expressed through the number k 

according to the formula (1).  
4. Solution analysis. Let us look at the solution of the problem of truss deflection under the 

action of a uniform load along the lower belt (3) with the coefficients (4), (5). If we fix the 

value of the total load not depending on the number of panels, 0 (2 1)P P n  . 

Let us design graphs depending on the number of dimensionless deflection panels 

0' / ( )EF P L   , 

where the length of the span is denoted 2( 1) 100L n a   m (Fig. 7). The resulting depen-

dence has a spasmodic character characteristic of lattice trusses. As the number of panels in-
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creases, the magnitude of the jumps drops. The relative deflection of trusses having the same 

span but differing by only one panel can vary by several times. At k = 3, h = 6 m we have 

' 11.7  and at k = 4  the deflection is three times smaller: ' 3.5.   Using the formula (1)  

n = 4 and n = 5 correspond to the numbers k = 3 and k = 4 sec. This feature of the truss design 

makes one focus on the choice of the number of panels.  
 

 

Fig. 7. Dependence  
of a relative deflection 

on the number of panels: 
1— h = 4 m; 
2— h = 5 m; 
3 — h = 6 m 

 
A dependence of a relative deflection of the support on the number of panels looks in another 

way (Fig. 8).  

0' / ( )EF P L   . 

The fluctuations in the shift value decrease with as the number of panels rises, and the curves 

go to the horizontal asymptote whose value can be identified using Maple tools:  

lim ' / (18 )
k

L h


  . 

 

 

Fig. 8. Addiction 
displacement of the movable support 

on the number of panels: 
1 — h = 4 m;  
2 — h = 5 m;  
3 — h = 6 m 
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Conclusions. The most distinct feature of the above scheme is its geometric variability 

manifesting itself when the number of panels is a multiple of three. 

There were some mathematical difficulties in identifying he picture of possible speeds of 

units of a variable structure (in fact, an instantly variable mechanism). There is no relevant 

algorithm for addressing such a problem in kinematics. Thus a simple algorithm based on the 

calculation of a two-link was set forth. The only drawback of this algorithm is associated with 

the arbitrariness of the choice of the starting point for the subsequent chain of speed 

calculation graphs. A point was empirically identified in the middle of the lower belt whose 

speed was set to zero. 

For a number of panels that are not a multiple of three, simple formulas for calculating the 

deflection and displacement of a support are obtained by induction, which are valid for any 

number of panels including those trusses where due to the huge size of the matrices of 

resolving equations numerical methods yield either a failure or a large error. It is thus 

convenient to use such analytical solutions both for the initial calculation of the designed 

structure and for evaluating numerical solutions. 
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