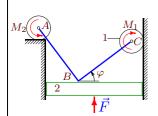
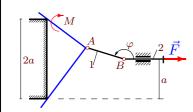
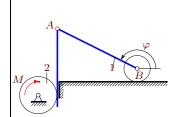

Уравнение Лагранжа для системы с одной степенью свободы


Кирсанов М.Н. **Решебник. Теоретическая механика**/Под ред. А. И. Кириллова. – М.:ФИЗМАТЛИТ, 2008. – 384 с. (с.300.)

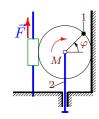
Задача 30.91.


Невесомый уголок, составленный из двух жестко соединенных взаимно перпендикулярных стержней, опирается на гладкие опоры. Диск радиуса r, закрепленный на шарнире в угловой точке, катится по поверхности поршня, скользящего в вертикальных направляющих. Масса диска равна m_1 , поршня — m_2 . К уголку приложен момент M, к поршню — вертикальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота уголка φ .

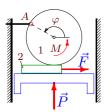
Задача 30.92.


Невесомый угольник ABC, касается в точке B гладкой поверхности поршня скользящего в вертикальных направляющих. $AB \perp BC$, AB = a, BC = b. Диски радиуса r шарнирно закреплены в точках A и C. Один диск катится по горизонтальной поверхности, другой — по вертикальной. К дискам приложены моменты M_1 и M_2 , к поршню — вертикальная сила F. Масса одного диска m_1 , масса поршня — m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота угольника φ .

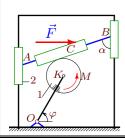
Задача 30.93.


Невесомый уголок, составленный из двух жестко соединенных взаимно перпендикулярных стержней, скользит по гладкой опоре. Масса стержня AB, соединяющего уголок с горизонтальным штоком, равна m_1 , масса штока — m_2 . AB=a. К уголку приложен момент M, к поршню — горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота уголка φ .

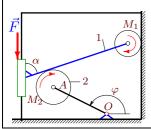
Задача 30.94.


Диск радиуса r, шарнирно закрепленный на конце стержня AB=a, катится по горизонтальной поверхности. Вертикальный шток касается цилиндра радиуса R с неподвижной осью и скользит по вертикальной плоскости. Масса стержня равна m_1 , цилиндра — m_2 . К цилиндру приложен момент M. Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня φ .

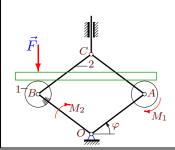
Задача 30.95.


Невесомый диск радиуса r, шарнирно закрепленный на конце вертикального штока, катится по вертикальной поверхности и касается муфты, скользящей по вертикальной направляющей. На ободе диска находится точка массой m_1 . К диску приложен момент M, к муфте — вертикальная сила F. Масса штока равна m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота диска φ .

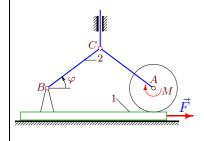
Задача 30.96.


Диск радиуса r массой m_1 шарнирно закреплен точкой обода A к неподвижному кронштейну. К вертикально движущемуся поршню приложена сила P. Между поршнем и диском расположена пластина, скользящая по поршню. Диск катится по пластине без проскальзывания. Масса пластины равна m_2 . К диску приложен момент M, к пластине — горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота диска φ .

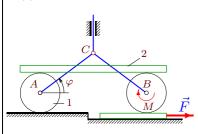
Задача 30.97.


Две муфты, скользящие по вертикальным направляющим, жестко соединены стержнем AB, по которому движется муфта C. Диск радиуса r, жестко соединенный с кривошипом OK=a, катится по этой муфте без проскальзывания. Масса диска равна m_1 , общая масса муфт A, B и стержня $AB-m_2$. К диску приложен момент M, к муфте C— горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .

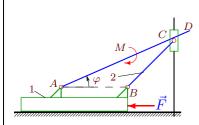
Задача 30.98.


К вертикально движущейся муфте жестко прикреплен наклонный стержень, на конце которого расположен диск радиуса r, катящийся по вертикальной плоскости. Цилиндр радиуса R, на кривошипе OA=a, катится по стержню без проскальзывания. Общая масса муфты и стержня равна m_1 , цилиндра — m_2 . К диску приложен момент M_1 , к цилиндру момент M_2 , к муфте — вертикальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .

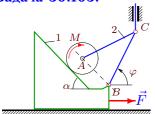
Задача 30.99.


Четыре стержня образуют ромб со стороной a. Два стержня шарнирно прикреплены к вертикальному штоку, два — к неподвижному шарниру. На осях A и B вращаются диски радиуса r, на дисках лежит брус. Качение дисков по брусу происходит без проскальзывания. Диск на оси B жестко скреплен со стержнем OB. Масса диска на оси B равна m_1 , стержня $BC-m_2$. К диску приложен момент M_1 , к стержню $BO-M_2$, к брусу — вертикальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня $OB \varphi$.

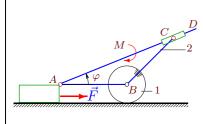
Задача 30.100.


Два стержня одинаковой длины a шарнирно прикреплены к вертикальному штоку. Стержень BC соединен с платформой, установленной на гладком горизонтальном основании. Диск радиуса r катится по платформе без проскальзывания. Масса платформы равна m_1 , стержня $BC-m_2$. К диску приложен момент M, к платформе — горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня BC φ .

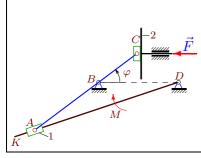
1


Два стержня одинаковой длины a шарнирно прикреплены к вертикальному штоку. Стержень AC соединен с осью диска A, который катится по горизонтальному основанию. Диск B катится по пластине, скользящей по тому же основанию. На дисках лежит горизонтальный брусок. Масса диска A равна m_1 , бруска — m_2 . К диску B приложен момент M, к пластине — горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня AC φ .

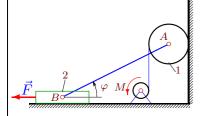
Задача 30.102.


Стержень BC длины a шарнирно соединяет горизонтально скользящую платформу и вертикальный ползун C. Стержень AD=2a, шарнирно закрепленный на платформе, опирается на ось C ползуна и скользит по ней, AB=a. Масса платформы равна m_1 , стержня $BC-m_2$. К стержню AD приложен момент M, к платформе — горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня AD φ .

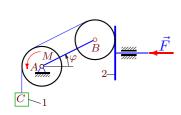
Задача 30.103.


Стержень BC длины a шарнирно соединяет горизонтально скользящую призму и вертикальный шток C. Стержень AC=a соединен с осью диска A радиуса r, который катится по наклонной грани призмы. Масса призмы равна m_1 , стержня $AC-m_2$. К диску приложен момент M, к призме— горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня $BC \varphi$.

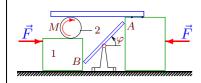
Задача 30.104.


Стержень AD длины 2a скользит в муфте C, шарнирно закрепленной на конце стержня BC=a, жестко скрепленного с диском массой m_1 радиуса R. Ось диска соединена невесомым стержнем с призмой, скользящей по горизонтальной плоскости. Масса стержня BC равна m_2 . К стержню AD приложен момент M, к призме — горизонтальная сила F, AB=a. Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня AD φ .

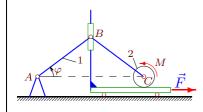
Задача 30.105.


На конце стержня AC, вращающегося вокруг оси B, шарнирно закреплена муфта A массой m_1 и моментом инерции J_1 . Муфта скользит по стержню KD, качающемуся вокруг оси D. На другом конце стержня AC закреплен ползун C, скользящий по поверхности горизонтального поршня. Масса поршня равна m_2 . К стержню KD приложен момент M, к штоку поршня — горизонтальная сила F. Дано: AB = BD = a, BC = b. Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня AC φ .

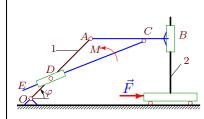
1


На одном конце стержня AB длиной a шарнирно закреплен ползун B, скользящий по горизонтальной поверхности, на другом — цилиндр радиуса R массой m_1 . Цилиндр катится по вертикальной стенке. Вертикальная нить огибает цилиндр и диск радиуса r, закрепленный на основании. Масса ползуна B равна m_2 . К диску приложен момент M, к ползуну — горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня φ .

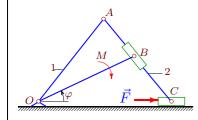
Задача 30.107.


Цилиндры одинакового радиуса R, расположенные по концам кривошипа AB длиной a, огибает нить. К нити подвешен груз массой m_1 . Цилиндр B катится по поверхности горизонтального поршня, цилиндр A вращается на неподвижном шарнире. Масса поршня равна m_2 . К цилиндру A приложен момент M, к поршню — горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .

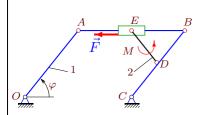
Задача 30.108.


Концы кривошипа длиной 2a, закрепленного в центре на неподвижном шарнире, скользят по вертикальным плоскостям двух блоков, лежащих на гладкой плоскости. По блоку B катится цилиндр радиуса R. Горизонтальный брус лежит на цилиндре и закреплен на невесомом блоке A. Масса блока B равна m_1 , цилиндра — m_2 . К цилиндру приложен момент M, к блокам — горизонтальные силы F. Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .

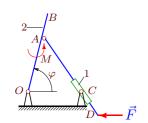
Задача 30.109.


Шарнир B двухзвенника ABC, AB=BC=a, закреплен на ползуне, скользящем по вертикальной стойке подвижной тележки. Цилиндр радиуса R катится по тележке. Масса стержня AB равна m_1 , цилиндра — m_2 . К цилиндру приложен момент M, к тележке — горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня AB φ .

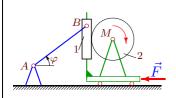
Задача 30.110.


Горизонтальный стержень AB жестко соединен с муфтой B. Муфта скользит по вертикальному стержню, закрепленному на подвижной тележке. На кривошипе OA длиной a закреплена качающаяся муфта D, в которой скользит стержень CE, шарнирно прикрепленный к стержню AB. Масса кривошипа равна m_1 , тележки вместе с вертикальным стержнем $-m_2$; AC=AD=b, CE=L. К стержню CE приложен момент M, к тележке — горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .

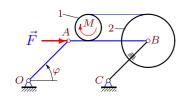
Задача 30.111.


На стержень AC двухзвенника OAC надета невесомая муфта B, шарнирно закрепленная на кривошипе OB длиной a. К кривошипу приложен момент M, к ползуну C, скользящему по горизонтальной поверхности, сила F; OA = AC = a. Масса стержня OA равна m_1 , масса стержня $AC - m_2$. Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .

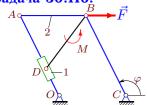
Задача 30.112.


На горизонтальном стержне AB шарнирного параллелограмма OABC надета невесомая муфта E, соединенная стержнем DE с серединой кривошипа BC. К стержню DE приложен момент M, к муфте E — горизонтальная сила F; OA = CB = 2a, DE = a. Масса кривошипа OA равна m_1 , масса стержня $DE - m_2$. Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .

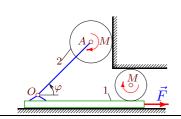
Задача 30.113.


Стержень AD длиной a, скользящий в качающейся муфте C, соединен шарниром A с кривошипом OB. На кривошип OB действует момент M, к точке D приложена горизонтальная сила F; OA = CO = b. Масса муфты, закрепленной на шарнире в центре масс, равна m_1 , момент инерции муфты — J_1 . Масса кривошипа OB равна m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .

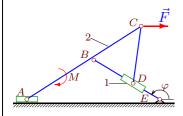
Задача 30.114.


На тележке закреплен диск радиусом R, касающийся муфты B. Муфта скользит по вертикальной стойке, закрепленой на тележке. На диск действует момент M, к тележке приложена горизонтальная сила F. Длина кривошипа AB равна a. Масса муфты равна m_1 , масса диска — m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .

Задача 30.115.

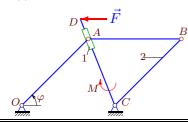

На горизонтальном стержне AB шарнирного параллелограмма OABC расположен цилиндр радиуса r массой m_1 , связанный нитью с цилиндром B радиуса 2r. Стержень BC жестко соединен с цилиндром B. К меньшему цилиндру приложен момент M, к шарниру A — горизонтальная сила F; OA = CB = a. Масса цилиндра B равна m_2 . Составить уравнение движения системы. За обобщенную координату принять угол φ .

Задача 30.116. В

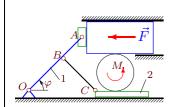


На кривошип OA шарнирного параллелограмма OABC надета муфта D, соединенная стержнем DB с шарниром B. К стержню DB приложен момент M, к шарниру B — горизонтальная сила F; OA = CB = a, DB = AB = b. Масса муфты равна m_1 , масса стержня $AB - m_2$. Составить уравнение движения системы. За обобщенную координату принять угол φ .

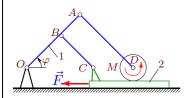
Задача 30.117.



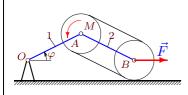
На шарнире A кривошипа OA длиной a, закрепленного на горизонтально скользящем бруске, касаясь вертикальной поверхности, вращается цилиндр радиуса R. Между бруском массой m_1 и горизонтальной поверхностью катается цилиндр радиуса r. К цилиндрам приложены равные моменты M, к бруску — горизонтальная сила F. Масса цилиндра A равна m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .


Стержень AC шарнирно соединен со стержнем BE, а шарнир C стержнем DC соединен с муфтой, скользящей по BE. Ползун A скользит по гладкой поверхности. К стержню AC приложен момент M, к шарниру C — горизонтальная сила F; AB = BE = a, BC = CD = b. Масса муфты равна m_1 , стержня $AC - m_2$. Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня $BE \varphi$.

Задача 30.119.

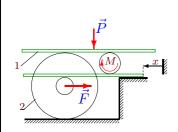

Муфта, шарнирно закрепленная в узле A четырехзвенника OABC, надета на кулису DC длиной a; OA = AB = BC = OC = b. На кулису действует момент M, к точке D приложена горизонтальная сила F. Масса муфты равна m_1 , стержня $BC - m_2$. Составить уравнение движения системы. За обобщенную координату принять угол φ .

Задача 30.120.


Цилиндр радиуса R катается между нижней поверхностью горизонтального поршня и пластиной, скользящей по плоскости. По боковой поверхности поршня движется ползун, закрепленный на конце кривошипа OA. Пластина прикреплена стержнем BC к кривошипу. К поршню приложена горизонтальная сила F, к цилиндру — момент M; OA = a, OB = BC = b. Масса кривошипа равна m_1 , пластины — m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .

Задача 30.121.

Цилиндр радиуса R катается по горизонтальной поверхности платформы, скользящей по гладкой плоскости. Стержень BC=a шарнирно соединяет кривошип OA и платформу. К платформе приложена горизонтальная сила F, к цилиндру — момент M; $OB=a,\ OA=AD=b$. Масса кривошипа OA равна m_1 , платформы — m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .


Задача 30.122.

Два цилиндра одинакового радиуса R связаны нерастяжимой нитью. Оси цилиндров соединены стержнем AB шарнирного двухзвенника OAB. Цилиндр B катается по горизонтальной плоскости. К оси B приложена горизонтальная сила F, к цилиндру A — момент M; OA = AB = a. Масса кривошипа OA равна m_1 , стержня $AB - m_2$. Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа φ .

1

Задача 30.123.

Блок из двух цилиндров (радиусы ободов r_0 и R_0) катается по горизонтальной поверхности. На обод меньшего радиуса опирается без проскальзывания горизонтальная пластина, скользящая правым концом по неподвижной опоре. Другая горизонтальная пластина опирается без проскальзывания на обод большего радиуса и на вал радиуса r_1 , катающийся по нижней пластине. К оси блока приложена горизонтальная сила F, к верхней пластине — вертикальная сила P, к валу — момент M. Масса верхней пластины равна m_1 , блока — m_2 . Момент инерции блока J_0 . Составить уравнение движения системы. За обобщенную координату принять перемещение нижней пластины x.

,