
Михайлов Константин, МЭИ, с12-02

Примеры решения механических задач с одной степенью свободы с помощью уравнений Лагранжа 2-го рода:

1.57. Невесомый изогнутый под прямым углом стержень соединяет груз массой m_1 и поршень массой m_2 , движущийся в вертикальных направляющих. AB = a, BC = b. Момент M приложен κ стержню, горизонтальная сила $F - \kappa$ углу B. За обобщенную координату принять φ .

Решение

Выразим скорости тел через обобщенную координату:

Учтём, что: $V_{Cx} = 0$ $V_{Ay} = 0$

Составим граф: $C \xrightarrow{\varphi} B \xrightarrow{\varphi + \pi/2} A$

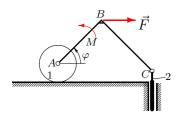
 $V_{Ax} = -b\dot{\varphi}\sin(\varphi) - a\dot{\varphi}\cos(\varphi)$ x:

 $y: \quad 0 = V_{Cy} + b\dot{\varphi}\cos(\varphi) - a\dot{\varphi}\sin(\varphi)$ Следовательно: $V_{Cy} = a\dot{\varphi}\sin(\varphi) - b\dot{\varphi}\cos(\varphi)$

Составим граф: $C \xrightarrow{\varphi} B$

 $V_{Bx} = -b\dot{\varphi}\sin(\varphi)$

Кинетическая энергия:


 $T = m_1/2V_A^2 + m_2/2V_C^2$ $T = m_1/2(b^2\dot{\varphi}^2\sin^2(\varphi) + ab\dot{\varphi}^2\sin(2\varphi) + a^2\dot{\varphi}^2\sin^2(\varphi)) + m_2/2(a^2\dot{\varphi}^2\sin^2(\varphi) - ab\dot{\varphi}^2\sin(2\varphi) + b^2\dot{\varphi}^2\cos^2(\varphi))$

 $T = \dot{\varphi}^2 / 2(A + B\sin^2(\varphi) + C\sin(2\varphi))$

Обобщенная сила:

$$Q = (-M\dot{\varphi} - FV_{Bx} - m_2 gV_{Cy})/\dot{\varphi}$$

 $Q = -M + Fb\sin(\varphi) - m_2ga\sin(\varphi) + m_2gb\cos(\varphi)$

1.58. Невесомый изогнутый под прямым углом стержень соединяет цилиндр массой m_1 и поршень массой m_2 , движущийся в вертикальных направляющих. AB = a, BC = b. Момент M приложен κ стержню, горизонтальная сила $F - \kappa$ углу B. За обобщенную координату принять φ .

Решение

Выразим скорости тел через обобщенную координату:

Учтём, что: $V_{Cx} = 0$ $V_{Ay} = 0$

Составим граф: $A \xrightarrow{\varphi} B \xrightarrow{\varphi - \pi/2} C$

 $0 = V_{Ax} - a\dot{\varphi}\sin(\varphi) + b\dot{\varphi}\cos(\varphi)$ x:

 $V_{Cy} = a\dot{\varphi}\cos(\varphi) + b\dot{\varphi}\sin(\varphi)$

Следовательно: $V_{Ax} = a\dot{\varphi}\sin(\varphi) - b\dot{\varphi}\cos(\varphi)$

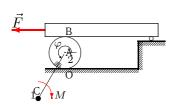
Составим граф: $A \xrightarrow{\varphi} B$

 $V_{Bx} = V_{Ax} - a\dot{\varphi}\sin(\varphi)$

Следовательно: $V_{Bx} = -b\dot{\varphi}\cos(\varphi)$

Кинетическая энергия:

 $T = 3m_1/4V_A^2 + m_2/2V_C^2$ $T = 3m_1/4(a^2\dot{\varphi}^2\sin^2(\varphi) - ab\dot{\varphi}^2\sin(2\varphi) + b^2\dot{\varphi}^2\cos^2(\varphi)) + m_2/2(a^2\dot{\varphi}^2\cos^2(\varphi) + ab\dot{\varphi}^2\sin(2\varphi) + ab\dot{\varphi}^2\sin(2\varphi) + ab\dot{\varphi}^2\cos^2(\varphi)) + ab\dot{\varphi}^2\cos^2(\varphi) + ab\dot{\varphi}^2\sin(2\varphi) + ab\dot{\varphi}^2\sin(2\varphi) + ab\dot{\varphi}^2\cos^2(\varphi) + ab\dot{\varphi}^2\sin(2\varphi) + ab\dot{\varphi}^2\sin(2\varphi) + ab\dot{\varphi}^2\cos^2(\varphi) + ab\dot{\varphi}^2\cos$


 $a^2\dot{\varphi}^2\sin(2\varphi) + b^2\dot{\varphi}^2\sin^2(\varphi)$

 $T = \dot{\varphi}^2 / 2(A + B\sin^2(\varphi) + C\sin(2\varphi))$

Обобщенная сила:

 $Q = (M\dot{\varphi} + FV_{Bx} - m_2 gV_{Cy})/\dot{\varphi}$

 $Q = M - Fb\cos(\varphi) - m_2gb\sin(\varphi) - m_2ga\cos(\varphi)$

1.59. Стержень длиной L с точкой массой m_1 на конце жестко соединен с диском радиуса R. Масса диска m_2 . На диск положен без проскальзывания горизонтальный брусок, опирающийся одним концом на подшипник. Момент М приложен к стержню. 3a обобщенную координату принять φ .

Решение

Выразим скорости тел через обобщенную координату:

Учтём, что: $V_{Ox} = 0$ $V_{Oy} = 0$

Составим граф: $O \xrightarrow{\pi/2} A$

 $V_{Ax} = -\dot{\varphi}R$

Составим граф: $O \xrightarrow{\pi/2} B$

 $V_{Bx} = -2\dot{\varphi}R$

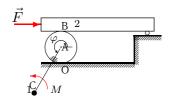
Составим граф: $A \xrightarrow{\varphi} C$

 $V_{Cx} = -\dot{\varphi}R - \dot{\varphi}L\sin(\varphi)$ x:

 $V_{Cy} = \dot{\varphi}L\cos(\varphi)$

Кинетическая энергия:

 $T = 3/4m_2V_{Ax}^2 + 1/2m_1V_C^2$


$$T = 3/4m_2\dot{\varphi}^2R^2 + 1/2m_1(\dot{\varphi}^2R^2 + 2\dot{\varphi}^2RL\sin(\varphi) + \dot{\varphi}^2L^2)$$

$$T = A/2\dot{\varphi}^2 + B/2\dot{\varphi}^2\sin(\varphi)$$

Обобщенная сила:

$$Q = (-M\dot{\varphi} - FV_{Bx} - m_1 gV_{Cy})/\dot{\varphi}$$

$$Q = -M + 2FR - m_1 gL \cos(\varphi)$$

1.60. Стержень длиной L с точкой массой m_1 на конце жестко соединен с диском радиуса R. На диск положен без проскальзывания горизонтальный брусок массой m_2 , опирающийся одним концом на подшипник. Момент М приложен к стержню. За обобщенную координату принять φ .

Решение

Выразим скорости тел через обобщенную координату:

Учтём, что: $V_{Ox} = 0$ $V_{Oy} = 0$

Составим граф: $O \xrightarrow{\pi/2} A$

 $x: V_{Ax} = -\dot{\varphi}R$

Составим граф: $O \xrightarrow{\pi/2} B$

 $V_{Bx} = -2\dot{\varphi}R$

Составим граф: $A \xrightarrow{\varphi} C$

 $V_{Cx} = -\dot{\varphi}R - \dot{\varphi}L\sin(\varphi)$

 $V_{Cy} = \dot{\varphi} L \cos(\varphi)$ y:

Кинетическая энергия:

 $T = 1/2m_2V_{Bx}^2 + 1/2m_1V_C^2$ $T = 2m_2\dot{\varphi}R^2 + 1/2m_1(\dot{\varphi}^2R^2 + 2\dot{\varphi}^2RL\sin(\varphi) + \dot{\varphi}^2L^2)$

 $T = A/2\dot{\varphi}^2 + B/2\dot{\varphi}^2 \sin(\varphi)$

Обобщенная сила:

 $Q = (M\dot{\varphi} + FV_{Bx} - m_1 gV_{Cy})/\dot{\varphi}$

 $Q = M - 2FR - m_1 q L \cos(\varphi)$