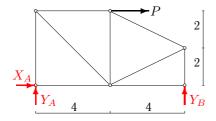

Глава 1

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕ-МЫ

1.1. Статически неопределимая ферма

Найти усилия в стержнях плоской фермы (рис. 1). Узел D нагружен горизонтальной силой $P=16 \mathrm{kH}.$ Размеры даны в метрах.



Решение

Для равновесия тела на плоскости достаточно три связи. В данной конструкции из четыре — одна неподвижная опора (две связи) и две подвижные. Система содержит одну дополнительную связь, следовательно, она один раз статически неопределима. Задачу решаем методом сил. Выбираем основную систему, отбрасывая вертикальную связь в узле C (рис. 2). Основная система статически определима и геометрически неизменяема.

Задача метода сил сводится к двум статически определимым задачам — основная система под действием внешней нагрузки и система под действием единичной силы взамен реакции опоры дополнительной опоры.

1. Находим реакции опор в основной системе от действия внешней силы (рис. 3). Составляем три уравнения равновесия

$$\sum X_i = X_A + P = 0,$$

$$\sum M_A = Y_B \cdot 8 - P \cdot 4 = 0,$$

$$\sum M_B = -Y_A \cdot 8 - P \cdot 4 = 0.$$

Решаем систему уравнений. Находим $X_A = -P = -12$ кH, $Y_A = -P/2 = -6$ кH, $Y_B = P/2 = 6$ кH.

Рис. 3

Для проверки составляем сумму проекцию всех сил, действующих на ферму, на ось y:

$$\sum Y_i = Y_A + Y_B = 0.$$

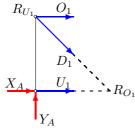
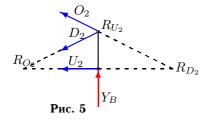


Рис. 4


Находим усилия в стержнях фермы от действия сил в основной системе. Усилия O_1 , U_1 , D_1 найдем по методу Риттера [3]. Рассекаем стержни первой панели вертикальным сечением (рис. 4). Находим точки Риттера (моментные точки) на пересечениях линий действия усилий в сечении. Таких точек две: R_{O_1} , R_{U_1} .

Составляем два уравнения моментов относительно точек Риттера

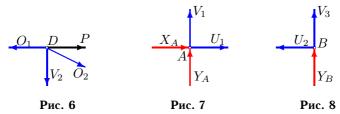
$$\sum M_{R_{O1}} = -O_1 \cdot 4 - Y_A \cdot 4 = 0,$$

$$\sum M_{R_{U1}} = U_1 \cdot 4 + X_A \cdot 4 = 0.$$
 (1.1)

Усилие D_1 в раскосе, для которого нет точки Риттера (усилия O_1 , U_1 параллельны), определяем из уравнения проекций на вертикальную ось

$$\sum Y_i = Y_A - D_1 \cos 45 = 0. \tag{1.2}$$

Рассекаем стержни второй панели вертикальным сечением (рис. 5). Находим точки Риттера: $R_{O_2},\ R_{U_2},\ R_{D_2}.$


Составляем уравнения моментов

$$\sum M_{R_{O2}} = O_2 \cdot 4 \sin \gamma + O_2 \cdot 2 \cos \gamma + Y_B \cdot 4 = 0,$$

$$\sum M_{R_{U2}} = -U_2 \cdot 2 = 0,$$

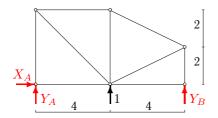
$$\sum M_{R_{D2}} = D_2 \cos \gamma \cdot 2 + D_2 \sin \gamma \cdot 4 - Y_B \cdot 4 = 0.$$
(1.3)

Усилия в вертикальных стержнях V_1 , V_2 , V_3 методом Риттера найти нельзя. Нет сечений, рассекающих ферму на две части (части должны содержать хотя бы один стержень) и пересекающих эти стержни. Используем метод вырезания узлов. Вырезаем узлы A, B, D (рис. 7–8), заменяя действие стержней их реакциями, направленными от узла к стержню.

Составляем необходимы уравнения равновесия в проекциях. Потребуются только проекции на ось y:

$$\sum Y_i^A = V_1 + Y_A = 0,$$

$$\sum Y_i^B = V_3 + Y_B = 0,$$


$$\sum Y_i^D = -V_2 - O_2 \sin \gamma = 0.$$
(1.4)

Решения уравнений 1.1–1.4 заносим в столбец " S_{Pk} "таблицы 1 (в кН)

Таблица 1

k		S_{Pk}	s_{1k}	L_k	S_k
1	U_1	12	0	4	12
2	U_2	0	0	4	0
3	V_1	6	0.5	4	1.081
4	V_2	3	-0.25	4	5.460
5	V_3	-6	0.5	2	-10.919
6	D_1	-8.485	-0.707	5.657	-1.529
7	D_2	6.708	0.559	4.472	1.208
8	O_1	6	0.5	4	1.081
9	O_2	6.708	0.559	4.472	1.208

2. Прикладываем к ферме единичную силу по направлению реакции Y_C дополнительной опоры (рис. 9). Находим реакции опор в основной системе. Составляем три уравнения равновесия

Решаем систему уравнений. Находим $X_A=0,\ Y_A=-0.5,\ Y_B=-0.5.$

Рис. 9

Методом Риттера или методом вырезания узлов находим усилия в стержнях фермы от действия единичной силы. В данном случае уравнения равновесия 1.1-1.4 при этом не изменятся по форме. Изменятся лишь значения реакций опор. Кроме этого на рис. 6 не будет горизонтальной силы P. Решения заносим в столбец " s_{1k} " таблицы 1. Для удобства вычислений в последний столбец таблицы запишем длины стержней.

Записываем каноническую систему метода сил

$$\delta_{11}Y_C + \Delta_{1P} = 0,$$

выражающую равенство нулю вертикального перемещения в точке ${\cal C}.$ Вычисляем коэффициенты канонической системы

$$\delta_{11} = \frac{1}{EF} \sum_{k} L_k s_{1k}^2 = 8.327,$$

$$\Delta_{1P} = \frac{1}{EF} \sum_{k} L_k S_{Pk} s_{1k} = 81.934.$$

Решаем систему и получаем

$$Y_C = -\Delta_{1P}/\delta_{11} = -9.839.$$

Определяем реакции опор и усилия в стержнях статически неопределимой системы

$$X_A = X_A^{(P)} + X_A^{(1)} Y_C = -12$$

$$Y_A = Y_A^{(P)} + Y_A^{(1)} Y_C = -1.081$$

$$Y_B = Y_B^{(P)} + Y_B^{(1)} Y_C = 10.919$$

$$S_k = S_{Pk} + s_{1k} Y_C, \ k = 1..9.$$

Результаты вычислений заносим в последний столбец таблицы 1.

Список литературы

- 1. *Говорухин В.Н., Цибулин В.Г.* Компьютер в математическом исследовании. Учебный курс. СПб.: Питер, 2001.
- 2. Дьяконов В.П. МАТLAВ: учебный курс. СПб.: Питер, 2001.
- 3. *Кирсанов М.Н.* Решебник. Теоретическая механика/ Под ред. А. И. Кириллова. М.: Физматлит, 2002.
- 4. *Матросов А.* Maple 6. Решение задач высшей математики и механики. СПб.: БХВ-Петербург, 2001.
- 5. *Очков В.Ф.* Mathcad 12 для студентов и инженеров. СПб.: БХВ-Петербург, 2005.

Учебное издание

КИРСАНОВ Михаил Николаевич

Решебник Сопротивление материалов

Редактор М. Б. Козинцева Оригинал-макет автора

Оформление переплета: А. А. Логунов

ЛР № 020528 от 05.06.97.

Подписано в печать с оригинал-макета ***** Формат $60 \times 84/16$. Бумага офсетная. Усл. печ. л. 6,0 Тираж 5000 экз. Заказ